Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecology ; 100(2): e02575, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30516275

RESUMO

Most studies consider aboveground plant species richness as a representative biodiversity measure. This approach inevitably assumes that the partitioning of total plant species richness into above- and belowground components is constant or at least consistent within and across vegetation types. However, with studies considering belowground plant richness still scarce and completely absent along vegetation gradients, this assumption lacks experimental support. Novel DNA sequencing techniques allow economical, high-throughput species identification of belowground environmental samples, enabling the measurement of the contributions of both above- and belowground plant components to total plant richness. We investigated above- and belowground plant species richness in four vegetation types (birch forest, heath, low alpine tundra, high alpine tundra) at the scale of herbaceous plant neighborhoods (dm) using 454 sequencing of the chloroplast trnL (UAA) intron to determine the plant species richness of environmental root samples and combined it with aboveground data from vegetation surveys to obtain total plant species richness. We correlated the measured plant species richness components with each other and with their respective plant biomass components within and across vegetation types. Total plant species richness exceeded aboveground richness twice on average and by as much as three times in low alpine tundra, indicating that a significant fraction of belowground plant richness cannot be recorded aboveground. More importantly, no consistent relationship among richness components (above- and belowground) was found within or across vegetation types, indicating that aboveground richness alone cannot predict total plant richness in contrasting vegetation types. Finally, no consistent relationship between plant richness and the corresponding biomass component was found. Our results clearly show that aboveground plant richness alone is a poor estimator of total plant species richness within and across different vegetation types. Consequently, it is crucial to account for belowground plant richness in future plant ecological studies in order to validate currently accepted plant richness patterns, as well as to measure potential changes in plant community composition in a changing environment.


Assuntos
Ecossistema , Plantas , Biodiversidade , Biomassa , Análise de Sequência de DNA
2.
New Phytol ; 203(1): 233-44, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24641509

RESUMO

Although experiments show a positive association between vascular plant and arbuscular mycorrhizal fungal (AMF) species richness, evidence from natural ecosystems is scarce. Furthermore, there is little knowledge about how AMF richness varies with belowground plant richness and biomass. We examined relationships among AMF richness, above- and belowground plant richness, and plant root and shoot biomass in a native North American grassland. Root-colonizing AMF richness and belowground plant richness were detected from the same bulk root samples by 454-sequencing of the AMF SSU rRNA and plant trnL genes. In total we detected 63 AMF taxa. Plant richness was 1.5 times greater belowground than aboveground. AMF richness was significantly positively correlated with plant species richness, and more strongly with below- than aboveground plant richness. Belowground plant richness was positively correlated with belowground plant biomass and total plant biomass, whereas aboveground plant richness was positively correlated only with belowground plant biomass. By contrast, AMF richness was negatively correlated with belowground and total plant biomass. Our results indicate that AMF richness and plant belowground richness are more strongly related with each other and with plant community biomass than with the plant aboveground richness measures that have been almost exclusively considered to date.


Assuntos
Biodiversidade , Biomassa , Pradaria , Micorrizas/classificação , Raízes de Plantas/microbiologia , Plantas/classificação , Biologia Computacional , DNA Fúngico/genética , Genes Fúngicos , Genes de RNAr , Micorrizas/genética , Saskatchewan , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA