Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36015385

RESUMO

Rootstocks are fundamental for peach production, and their architectural root traits determine their performance. Root-system architecture (RSA) analysis is one of the key factors involved in rootstock selection. However, there are few RSA studies on Prunus spp., mostly due to the tedious and time-consuming labor of measuring below-ground roots. A root-phenotyping experiment was developed to analyze the RSA of seedlings from 'Okinawa' and 'Guardian'™ peach rootstocks. The seedlings were established in rhizoboxes and their root systems scanned and architecturally analyzed. The root-system depth:width ratio (D:W) throughout the experiment, as well as the root morphological parameters, the depth rooting parameters, and the root angular spread were estimated. The 'Okinawa' exhibited greater root morphological traits, as well as the other parameters, confirming the relevance of the spatial disposition and growth pattern of the root system.

2.
J Nematol ; 32(2): 205-9, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19270967

RESUMO

Sting nematode (Belonolaimus longicaudatus) is recognized as a pathogen of cotton (Gossypium hirsutum), but the expected damage from a given population density of this nematode has not been determined. The objective of this study was to quantify the effects of increasing initial population densities (Pi) of B. longicaudatus on cotton yield and root mass. In a field plot study, nematicide application and cropping history were used to obtain a wide range of Pi values. Cotton yields were regressed on Pi density of B. longicaudatus to quantify yield losses in the field. In controlled environmental chambers, cotton was grown in soil infested with increasing Pi's of B. longicaudatus. After 40 days, root systems were collected, scanned on a desktop scanner, and root lengths were measured. Root lengths were regressed on inoculation density of B. longicaudatus to quantify reductions in the root systems. In the field, high Pi's (>100 nematodes/130 cm(3) of soil) reduced yields to near zero. In controlled environmental chamber studies, as few as 10 B. longicaudatus/130 cm(3) of soil caused a 39% reduction in fine cotton roots, and 60 B. longicaudatus/130 cm(3) of soil caused a 70% reduction. These results suggest that B. longicaudatus can cause significant damage to cotton at low population densities, whereas at higher densities crop failure can result.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA