Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
New Phytol ; 241(5): 1973-1984, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38273449

RESUMO

The Jornada Basin Long-Term Ecological Research Site (JRN-LTER, or JRN) is a semiarid grassland-shrubland in southern New Mexico, USA. The role of intraspecific competition in constraining shrub growth and establishment at the JRN and in arid systems, in general, is an important question in dryland studies. Using information on shrub distributions and growth habits at the JRN, we present a novel landscape-scale (c. 1 ha) metric (the 'competition index', CI), which quantifies the potential intensity of competitive interactions. We map and compare the intensity of honey mesquite (Prosopis glandulosa, Torr.) competition spatially and temporally across the JRN-LTER, investigating associations of CI with shrub distribution, density, and soil types. The CI metric shows strong correlation with values of percent cover. Mapping CI across the Jornada Basin shows that high-intensity intraspecific competition is not prevalent, with few locations where intense competition is likely to be limiting further honey mesquite expansion. Comparison of CI among physiographic provinces shows differences in average CI values associated with geomorphology, topography, and soil type, suggesting that edaphic conditions may impose important constraints on honey mesquite and growth. However, declining and negative growth rates with increasing CI suggest that intraspecific competition constrains growth rates when CI increases above c. 0.5.


Assuntos
Ecossistema , Prosopis , New Mexico , Solo
2.
Plant Cell Environ ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254168

RESUMO

The driving forces of transpiration are not only atmospheric evaporation but also root zone water supply and stomatal regulation among species. However, the biophysiological drivers of transpiration remain incompletely understood in heterogeneous karst habitats. This study investigated the commonly coexisting tree species Mallotus philippensis and Celtis biondii in two typical karst habitats: rock-dominated (RD) habitat and control soil-dominated (SD) habitat. Over 2 years, soil moisture, transpiration, root distribution, and leaf water potential were measured. The results showed that soil moisture in the RD habitat was significantly lower than in the SD habitat. Transpiration patterns also differed between habitats, with species-specific distinctions driven by biophysiological traits. M. philippensis showed small hydroscape areas and its root system mainly distributed in the soil zone in both habitats. The isohydric behaviour and lower root density in the RD habitat drove M. philippensis to reduce transpiration in response to soil water deficiency. Conversely, C. biondii had large hydroscape areas and roots capable of penetrating bedrock. It transpired higher relying on ample accessible water through anisohydric behaviour and having a more robust root system both in soil and bedrock zones in the RD habitat. Our study highlights the critical role of root water accessibility and leaf iso/anisohydric tendencies in driving transpiration.

3.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125858

RESUMO

The bottle gourd [Lagenaria siceraria (Molina) Standl.] is often utilized as a rootstock for watermelon grafting. This practice effectively mitigates the challenges associated with continuous cropping obstacles in watermelon cultivation. The lower ground temperature has a direct impact on the rootstocks' root development and nutrient absorption, ultimately leading to slower growth and even the onset of yellowing. However, the mechanisms underlying the bottle gourd's regulation of root growth in response to low root zone temperature (LRT) remain elusive. Understanding the dynamic response of bottle gourd roots to LRT stress is crucial for advancing research regarding its tolerance to low temperatures. In this study, we compared the physiological traits of bottle gourd roots under control and LRT treatments; root sample transcriptomic profiles were monitored after 0 h, 48 h and 72 h of LRT treatment. LRT stress increased the malondialdehyde (MDA) content, relative electrolyte permeability and reactive oxygen species (ROS) levels, especially H2O2 and O2-. Concurrently, LRT treatment enhanced the activities of antioxidant enzymes like superoxide dismutase (SOD) and peroxidase (POD). RNA-Seq analysis revealed the presence of 2507 and 1326 differentially expressed genes (DEGs) after 48 h and 72 h of LRT treatment, respectively. Notably, 174 and 271 transcription factors (TFs) were identified as DEGs compared to the 0 h control. We utilized quantitative real-time polymerase chain reaction (qRT-PCR) to confirm the expression patterns of DEGs belonging to the WRKY, NAC, bHLH, AP2/ERF and MYB families. Collectively, our study provides a robust foundation for the functional characterization of LRT-responsive TFs in bottle gourd roots. Furthermore, these insights may contribute to the enhancement in cold tolerance in bottle gourd-type rootstocks, thereby advancing molecular breeding efforts.


Assuntos
Cucurbitaceae , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Raízes de Plantas , Fatores de Transcrição , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/crescimento & desenvolvimento , Cucurbitaceae/metabolismo , Cucurbitaceae/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , Estresse Fisiológico/genética , Espécies Reativas de Oxigênio/metabolismo , Temperatura Baixa
4.
New Phytol ; 240(3): 968-983, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37621238

RESUMO

Accounting for water limitation is key to determining vegetation sensitivity to drought. Quantifying water limitation effects on evapotranspiration (ET) is challenged by the heterogeneity of vegetation types, climate zones and vertically along the rooting zone. Here, we train deep neural networks using flux measurements to study ET responses to progressing drought conditions. We determine a water stress factor (fET) that isolates ET reductions from effects of atmospheric aridity and other covarying drivers. We regress fET against the cumulative water deficit, which reveals the control of whole-column moisture availability. We find a variety of ET responses to water stress. Responses range from rapid declines of fET to 10% of its water-unlimited rate at several savannah and grassland sites, to mild fET reductions in most forests, despite substantial water deficits. Most sensitive responses are found at the most arid and warm sites. A combination of regulation of stomatal and hydraulic conductance and access to belowground water reservoirs, whether in groundwater or deep soil moisture, could explain the different behaviors observed across sites. This variety of responses is not captured by a standard land surface model, likely reflecting simplifications in its representation of belowground water storage.

5.
New Phytol ; 240(6): 2276-2287, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37897071

RESUMO

Climate warming advances the onset of tree growth in spring, but above- and belowground phenology are not always synchronized. These differences in growth responses may result from differences in root and bud dormancy dynamics, but root dormancy is largely unexplored. We measured dormancy in roots and leaf buds of Fagus sylvatica and Populus nigra by quantifying the warming sum required to initiate above- and belowground growth in October, January and February. We furthermore carried out seven experiments, manipulating only the soil and not air temperature before or during tree leaf-out to evaluate the potential of warmer roots to influence budburst timing using seedlings and adult trees of F. sylvatica and seedlings of Betula pendula. Root dormancy was virtually absent in comparison with the much deeper winter bud dormancy. Roots were able to start growing immediately as soils were warmed during the winter. Interestingly, higher soil temperature advanced budburst across all experiments, with soil temperature possibly accounting for c. 44% of the effect of air temperature in advancing aboveground spring phenology per growing degree hour. Therefore, differences in root and bud dormancy dynamics, together with their interaction, likely explain the nonsynchronized above- and belowground plant growth responses to climate warming.


Assuntos
Betula , Árvores , Estações do Ano , Temperatura , Solo , Folhas de Planta
6.
Ann Bot ; 132(3): 455-470, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37688538

RESUMO

BACKGROUND AND AIMS: Air and root zone temperatures are important environmental factors affecting plant growth and yield. Numerous studies have demonstrated that air temperature strongly affects plant growth and development. Despite the extensive literature on air temperature, comprehensive studies on the effects of root zone temperature (RZT) on plant growth, elemental composition, and pigments are limited. In this study, we carefully observed the effects of RZT in red leaf lettuce to understand its effect on lettuce growth and pigment content. METHODS: Lettuce (Lactuca sativa, red leaf cultivar 'Red Fire') was grown hydroponically in a plant factory with artificial light under three RZT treatments (15, 25, or 35 °C) for 13 days. We investigated the comprehensive effects of RZT on the production of red leaf lettuce by metabolome and ionome analyses. KEY RESULTS: The 25 °C RZT treatment achieved maximum shoot and root dry weight. The 35 °C RZT decreased plant growth but significantly increased pigment contents (e.g. anthocyanins, carotenoids). In addition, a RZT heating treatment during plant cultivation that changed from 25 to 35 °C RZT for 8 days before harvest significantly increased shoot dry weight compared with the 35 °C RZT and significantly increased pigments compared with the 25 °C RZT. The 15 °C RZT resulted in significantly less pigment content relative to the 35 °C RZT. The 15 °C RZT also resulted in shoot and root dry weights greater than the 35 °C RZT but less than the 25 °C RZT. CONCLUSIONS: This study demonstrated that plant growth and pigments can be enhanced by adjusting RZT during different stages of plant growth to attain enhanced pigment contents while minimizing yield loss. This suggests that controlling RZT could be a viable method to improve lettuce quality via enhancement of pigment content quality while maintaining acceptable yields.


Assuntos
Lactuca , Raízes de Plantas , Temperatura , Hidroponia , Antocianinas/farmacologia
7.
Mol Biol Rep ; 51(1): 35, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157124

RESUMO

BACKGROUND: Plant microbiome acts as an interface between plants and their environment, aiding in the functioning of the ecosystem, such as protection against abiotic and biotic stress along with improving nutrient uptake. The rhizosphere is an essential interface for the interaction between plants and microbes and plays a substantial part in the removal as well as uptake of heavy metals and antibiotics from contaminated locations. Eichhornia crassipes is a promising plant that contains a rich community of microbes in its rhizosphere. Microorganism's association with plants embodies a crucial pathway via which humans can also be exposed to antibiotic-resistant genes and bacteria. METHODS AND RESULTS: In our earlier study enhanced removal of ciprofloxacin was observed by plant growth-promoting Microbacterium sp. WHC1 in the presence of E. crassipes root exudates. Therefore, the V3-V4, hypervariable region of the 16 S rRNA gene was studied to assess the bacterial diversity and functional profiles of the microbiota associated with plant roots. Using the QIIME software program, 16 S rRNA data from the Next Generation Sequencing (NGS) platform was examined. Alpha diversity including Chao1, Observed Shannon, and Simpson index denote significantly higher bacterial diversity. Proteobacteria (79%) was the most abundant phylum which was present in the root samples followed by Firmicutes (8%) and Cyanobacteria (8%). Sulfuricurvum (36%) is the most abundant genus belonging to the family Helicobacteraceae and the species kujiense in the genus Sulfuricurvum is the most abundant species present in the root sample. Also, the bacterial communities in the rhizoplane of Eichhornia crassipes harbor the genes conferring resistance to beta-lactams, tetracycline, fluoroquinolones, and penams. CONCLUSION: Metagenomic studies on the E. crassipes microbiome showed that the bacterial communities constituting the root exudates of the Eichhornia aid them to survive in a polluted environment.


Assuntos
Eichhornia , Humanos , Ecossistema , Antibacterianos/metabolismo , Ciprofloxacina , Fluoroquinolonas , Bactérias/genética
8.
J Environ Manage ; 335: 117494, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871357

RESUMO

We present the use of root zone treatment (RZT) based system for the removal of pharmaceutical and personal care products (PPCPs) from domestic wastewater. The occurrence of more than a dozen PPCPs were detected in an academic institution wastewater treatment plant (WWTP) at three specific locations, i.e., influent, root treatment zone, and effluents. The comparisons of observed compounds detected at various stages of WWTP suggest that the presence of PPCPs, like homatropine, cytisine, carbenoxolone, 4,2',4',6'-tetrahydroxychalcone, norpromazine, norethynodrel, fexofenadine, indinavir, dextroamphetamine, 3-hydroxymorphinan, phytosphingosine, octadecanedioic acid, meradimate, 1-hexadecanoyl-sn-glycerol, and 1-hexadecylamine, are unusual than the usual reported PPCPs in the WWTPs. In general, carbamazepine, ibuprofen, acetaminophen, trimethoprim, sulfamethoxazole, caffeine, triclocarban, and triclosan are often reported in wastewater systems. The normalized abundances of PPCPs range between 0.037-0.012, 0.108-0.009, and 0.208-0.005 in main influent, root zone effluent, and main effluents, respectively, of the WWTP. In addition, the removal rates of PPCPs were observed from -200.75% to ∼100% at RZT phase in the plant. Interestingly, we observed several PPCPs at later stages of treatment which were not detected in the influent of the WWTP. This is probably owing to the presence of conjugated metabolites of various PPCPs present in the influent, which subsequently got deconjugated to reform the parent compounds during the biological wastewater treatment. In addition, we suspect the potential release of earlier absorbed PPCPs in the system, which were absent on that particular day of sampling but have been part of earlier influents. In essence, RZT-based WWTP was found to be effective in removing the PPCPs and other organic contaminants in the study but results in stress the need for further comprehensive research on RZT system to conclude the exact removal efficacy and fate of PPCPs during treatment in the system. As a current research gap, the study also recommended RZT to be appraised for PPCPs in-situ remediation from landfill leachates, an underestimated source of PPCPs intrusion in the environment.


Assuntos
Cosméticos , Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Eliminação de Resíduos Líquidos , Monitoramento Ambiental/métodos , Cosméticos/análise , Purificação da Água/métodos , Poluentes Químicos da Água/análise , Preparações Farmacêuticas
9.
Plant Mol Biol ; 110(4-5): 385-395, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35169910

RESUMO

KEY MESSAGE: The present study clearly showed that the optimum root zone temperature of photosynthesis and plant growth was affected by air temperature, and that optimization of root zone temperature depending on an air growth temperature by cooling systems could lead to improvement of plant production. Temperature is one of the critical factors affecting plant growth and yield production. Both air and root zone temperatures can strongly affect growth and development of plants. However, studies on the effects of root zone temperature on plant growth parameters along with air temperature are still limited. In the present study, the effects of air and root zone temperature on plant growth, physiological parameters and photosynthetic characteristics of lettuce plants were investigated to optimize the air and root zone temperature to achieve the best growth conditions for lettuce plants. Two air temperature treatments (30/25 and 25/20 °C at day/night temperature) and five root zone temperature treatments (15, 20, 25, 30 and 35 °C) were applied in this study. The present study showed that the maximum plant growth of lettuce plants was higher in air temperatures at 30/25 °C than in 25/20 °C. When the plants were grown at an air temperature of 30/25 °C, the optimum root zone temperature appeared to be 30 °C. However, when the plants were grown at an air temperature of 25/20 °C, the optimum root temperature decreased and appeared to be 25 °C. Furthermore, plants grown under air temperature of 30/25 °C showed greater CO2 assimilation rate, stomatal conductance, electron transport rate (ETR) at high light, and lower non-photochemical quenching (NPQ) at high light than those of 25/20 °C. These results suggest that it is necessary to control and adjust the root zone temperature based on the air temperature.


Assuntos
Lactuca , Raízes de Plantas , Temperatura , Raízes de Plantas/fisiologia , Fotossíntese , Temperatura Alta , Folhas de Planta/fisiologia
10.
Plant Cell Physiol ; 63(1): 30-44, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34508646

RESUMO

To investigate physiological and transcriptomic regulation mechanisms underlying the distinct net fluxes of NH4+ and NO3- in different root segments of Populus species under low nitrogen (N) conditions, we used saplings of Populus × canescens supplied with either 500 (normal N) or 50 (low N) µM NH4NO3. The net fluxes of NH4+ and NO3-, the concentrations of NH4+, amino acids and organic acids and the enzymatic activities of nitrite reductase (NiR) and glutamine synthetase (GS) in root segment II (SII, 35-70 mm to the apex) were lower than those in root segment I (SI, 0-35 mm to the apex). The net NH4+ influxes and the concentrations of organic acids were elevated, whereas the concentrations of NH4+ and NO3- and the activities of NiR and GS were reduced in SI and SII in response to low N. A number of genes were significantly differentially expressed in SII vs SI and in both segments grown under low vs normal N conditions, and these genes were mainly involved in the transport of NH4+ and NO3-, N metabolism and adenosine triphosphate synthesis. Moreover, the hub gene coexpression networks were dissected and correlated with N physiological processes in SI and SII under normal and low N conditions. These results suggest that the hub gene coexpression networks play pivotal roles in regulating N uptake and assimilation, amino acid metabolism and the levels of organic acids from the tricarboxylic acid cycle in the two root segments of poplars in acclimation to low N availability.


Assuntos
Adaptação Fisiológica/genética , Compostos de Amônio/metabolismo , Transporte Biológico/genética , Nitratos/metabolismo , Nitrogênio/deficiência , Raízes de Plantas/metabolismo , Populus/metabolismo , Variação Genética , Genótipo , Populus/genética , Transcriptoma
11.
Funct Integr Genomics ; 23(1): 11, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542181

RESUMO

The negative effects of waterlogging can be effectively improved through the use of waterlogging-resistant rootstocks. However, the underlying physiological and molecular mechanisms of Chinese bayberry (Morella rubra) rootstock tolerance to waterlogging have not yet been investigated. This study aims to unravel the molecular regulation mechanisms underlying waterlogging-tolerant rootstocks. Two rootstocks, Morella cerifera (tolerant) and Morella rubra (sensitive), were selected for root zone hypoxia treatments, assessments of hormone levels and antioxidant enzyme activity, and transcriptomic analysis. While the contents of abscisic acid (ABA) and brassinosteroid (BR) in the roots of M. rubra decreased significantly after root zone hypoxia treatment, there were no significant changes in M. cerifera. Both the superoxide dismutase (SOD) activity and malondialdehyde (MDA) content increased in M. cerifera but were decreased in M. rubra. Transcriptome sequencing identified 1,925 (928 up- and 997 downregulated) and 733 (278 up- and 455 downregulated) differentially expressed genes (DEGs) in the two rootstocks. The gene set enrichment analysis showed that 84 gene sets were enriched after root zone hypoxia treatment, including 57 (35 up- and 22 downregulated) and 14 (five up- and nine downregulated) gene sets derived from M. cerifera and M. rubra, respectively, while the remaining 13 gene sets were shared. KEGG pathway analysis showed specific enrichment in six pathways in M. cerifera, including the mitogen-activated protein kinase (MAPK), tyrosine metabolism, glycolysis/gluconeogenesis, ribosome, cyanoamino acid metabolism, and plant-pathogen interaction pathways. Overall, these results provide preliminary insights into the molecular mechanisms of Chinese bayberry tolerance to waterlogging.


Assuntos
Myrica , Transcriptoma , Regulação da Expressão Gênica de Plantas , Hipóxia , Myrica/genética , Plântula/genética
12.
Environ Res ; 212(Pt B): 113278, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35430274

RESUMO

Soil moisture in the root zone is the most important factor in eco-hydrological processes. Even though soil moisture can be obtained by remote sensing, limited to the top few centimeters (<5 cm). Researchers have attempted to estimate root-zone soil moisture using multiple regression, data assimilation, and data-driven methods. However, correlations between root-zone soil moisture and its related variables, including surface soil moisture, always appear nonlinear, which is difficult to extract and express using typical statistical methods. The artificial intelligence (AI) method, which is advantageous for nonlinear relationship analysis and extraction is applied for root-zone soil moisture estimation, but by only considering its separate temporal or spatial correlations. The convolutional long short-term memory (ConvLSTM) model, known to capture spatiotemporal patterns of large-scale sequential datasets with the advantage of dealing with spatiotemporal sequence-forecasting problem, was used in this study to estimate root-zone soil moisture based on remote sensing-based variables. Owing to limitation of regional soil moisture observation data, the physical model Hydrus-1D was used to generate large and spatiotemporal vertical soil moisture dataset for the ConvLSTM model training and verification. Then, normalized difference vegetation index (NDVI) etc. remote sensing-based factors were selected as predictive variables. Results of the ConvLSTM model showed that the fitting coefficients (R2) of the root-zone soil moisture estimation significantly increased compared to those achieved by Global Land Data Assimilation System products, especially for deep layers. For example, R2 increased from 0.02 to 0.60 at depth of 40 cm. This study suggests that a combination of the physical model and AI is a flexible tool capable of predicting spatiotemporally continuous root-zone soil moisture with good accuracy on a large scale.


Assuntos
Aprendizado Profundo , Solo , Inteligência Artificial , Tecnologia de Sensoriamento Remoto/métodos , Água/análise
13.
Int J Phytoremediation ; 24(10): 1100-1106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34787032

RESUMO

This study investigated the effects of soil lead (Pb), biochar, and partial root zone drought (PRD) on mulberry (Morus alba L.) branches and leaves biomass, Pb accumulation, and bioactive compounds including 1-deoxynojirimycin (DNJ) and flavonoids. Three-factor pot experiments were conducted with biochar, PRD, and soil Pb at four concentration levels (0, 50, 200, and 800 mg kg-1). Results revealed that mulberry aboveground biomass did not decrease significantly across the soil Pb levels. Pb concentration of mulberry leaves do not increase significantly when soil Pb was 200 mg kg-1; however, it significantly accumulated under 800 mg kg-1. There was a dose-effect between the Pb concentration in branches and the soil Pb levels. Mulberry leaf flavonoids were affected by the interaction of soil Pb and biochar. The interaction between two of the three factors significantly affected leaves DNJ concentration. The combination of biochar and PRD maintained the biomass of mulberry and did not significantly increase Pb in leaves under 200 mg kg-1 soil Pb concentration. In summary, mulberry has a higher resistance to soil Pb stress, and it can be planted in moderate Pb-contaminated soils for no loss of biomass and can safely harvest the branches and leaves.Novelty statementAn economic benefit is a key to the practical application and sustainability of phytoremediation. Based on this, we studied the effects of soil Pb on biomass, Pb accumulation, and bioactive substance concentration of harvesting organs in mulberry.Phytoremediation is not isolated, and techniques, such as soil amendments and water management also play a role. In this study, we found that biochar and partial root-zone irrigation had a synergistic effect on the response of mulberry to soil Pb, which could be co-applied in the phytoremediation of lead-contaminated soil.The concentration of heavy metals is the key to ensuring product safety in heavy metal contaminated soil. We found that Pb concentration in leaf and stem of mulberry did not significantly increase under 200 mg kg-1 soil Pb, while increased at 800 mg kg-1 soil Pb. Therefore, planting mulberry on 200 mg kg-1 Pb contaminated soil can safely harvest branches and leaves.


Assuntos
Metais Pesados , Morus , Poluentes do Solo , Biodegradação Ambiental , Biomassa , Flavonoides , Chumbo , Metais Pesados/análise , Folhas de Planta/química , Solo , Poluentes do Solo/análise
14.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555269

RESUMO

Root-zone restriction induces physiological stress on roots, thus limiting the vegetative and enhancing reproductive development, which promotes fruit quality and growth. Numerous bacterial-related growth-promoting, stress-mitigating, and disease-prevention activities have been described, but none in root-restricted cultivation. The study aimed to understand the activities of grapevine bacterial communities and plant-bacterial relationships to improve fruit quality. We used High-throughput sequencing, edaphic soil factors, and network analysis to explore the impact of restricted cultivation on the diversity, composition and network structure of bacterial communities of rhizosphere soil, roots, leaves, flowers and berries. The bacterial richness, diversity, and networking were indeed regulated by root-zone restriction at all phenological stages, with a peak at the veraison stage, yielding superior fruit quality compared to control plants. Moreover, it also handled the nutrient availability in treated plants, such as available nitrogen (AN) was 3.5, 5.7 and 0.9 folds scarcer at full bloom, veraison and maturity stages, respectively, compared to control plants. Biochemical indicators of the berry have proved that high-quality berry is yielded in association with the bacteria. Cyanobacteria were most abundant in the phyllosphere, Proteobacteria in the rhizosphere, and Firmicutes and Bacteroidetes in the endosphere. These bacterial phyla were most correlated and influenced by different soil factors in control and treated plants. Our findings are a comprehensive approach to the implications of root-zone restriction on the bacterial microbiota, which will assist in directing a more focused procedure to uncover the precise mechanism, which is still undiscovered.


Assuntos
Microbiota , Solo , Solo/química , Microbiologia do Solo , Rizosfera , Microbiota/fisiologia , Bactérias/genética , Plantas , Raízes de Plantas/microbiologia
15.
Int J Mol Sci ; 23(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36142602

RESUMO

Root-zone CO2 is essential for plant growth and metabolism. However, the partitioning and assimilation processes of CO2 absorbed by roots remain unclear in various parts of the oriental melon. We investigated the time at which root-zone CO2 enters the oriental melon root system, and its distribution in different parts of the plant, using 13C stable isotopic tracer experiments, as well as the effects of high root-zone CO2 on leaf carbon assimilation-related enzyme activities and gene expressions under 0.2%, 0.5% and 1% root-zone CO2 concentrations. The results showed that oriental melon roots could absorb CO2 and transport it quickly to the stems and leaves. The distribution of 13C in roots, stems and leaves increased with an increase in the labeled root-zone CO2 concentration, and the δ13C values in roots, stems and leaves increased initially, and then decreased with an increase in feeding time, reaching a peak at 24 h after 13C isotope labeling. The total accumulation of 13C in plants under the 0.5% and 1% 13CO2 concentrations was lower than that in the 0.2% 13CO2 treatment. However, the distributional proportion of 13C in leaves under 0.5% and 1% 13CO2 was significantly higher than that under the 0.2% CO2 concentration. Photosynthetic carbon assimilation-related enzyme activities and gene expressions in the leaves of oriental melon seedlings were inhibited after 9 days of high root-zone CO2 treatment. According to these results, oriental melon plants' carbon distribution was affected by long-term high root-zone CO2, and reduced the carbon assimilation ability of the leaves. These findings provide a basis for the further quantification of the contribution of root-zone CO2 to plant communities in natural field conditions.


Assuntos
Cucumis melo , Plântula , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Plântula/metabolismo
16.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293393

RESUMO

Root-zone CO2 is a major factor that affects crop growth, development, nutrient uptake, and metabolism. Oriental melon is affected by root-zone gases during growth, the microstructure, sugar and starch contents, enzymatic activities related to sugar and starch metabolism, and gene expression in the roots of oriental melon seedlings were investigated under three root-zone CO2 concentrations (CK: 0.2%, T1: 0.4%, T2: 1.1%). Elevated root-zone CO2 altered the cellular microstructure, accelerated the accumulation and release of starch grains, disrupted organelle formation, and accelerated root senescence. The sugar and starch contents and metabolic activity in the roots increased within a short duration following treatment. Compared to the control, 232 and 1492 differentially expressed genes (DEGs) were identified on the 6th day of treatment in T1 and T2 plants, respectively. The DEGs were enriched in three metabolic pathways. The majority of genes related to sucrose and starch hydrolysis were upregulated, while the genes related to sucrose metabolism were downregulated. The study revealed that oriental melon seedlings adapt to elevated root-zone CO2 stress by adjusting sugar and starch metabolism at the transcriptome level and provides new insights into the molecular mechanism underlying the response to elevated root-zone CO2 stress.


Assuntos
Cucumis melo , Plântula , Plântula/metabolismo , Transcriptoma , Dióxido de Carbono/metabolismo , Açúcares/metabolismo , Amido/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Cucumis melo/genética , Carboidratos , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas
17.
BMC Microbiol ; 21(1): 317, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784893

RESUMO

BACKGROUND: The root-zone restriction cultivation technique is used to achieve superior fruit quality at the cost of limited vegetative and enhanced reproductive development of grapevines. Fungal interactions and diversity in grapevines are well established; however, our knowledge about fungal diversity under the root-zone restriction technique is still unexplored. To provide insights into the role of mycobiota in the regulation of growth and fruit quality of grapevine under root-zone restriction, DNA from rhizosphere and plant compartments, including white roots (new roots), leaves, flowers, and berries of root-zone restricted (treatment) and conventionally grown plants (control), was extracted at three growth stages (full bloom, veraison, and maturity). RESULTS: Diversity analysis based on the ITS1 region was performed using QIIME2. We observed that the root-zone restriction technique primarily affected the fungal communities of the soil and plant compartments at different growth stages. Interestingly, Fusarium, Ilyonectria, Cladosporium and Aspergillus spp observed in the rhizosphere overlapped with the phyllosphere at all phenological stages, having distinctive abundance in grapevine habitats. Peak richness and diversity were observed in the rhizosphere at the full bloom stage of control plants, white roots at the veraison stage of treatment, leaves at the maturity stage of treatment, flowers at the full bloom stage and berries at the veraison stage of control plants. Except for white roots, the diversity of soil and plant compartments of treated plants tended to increase until maturity. At the maturity stage of the treated and control plants, the abundance of Aspergillus spp. was 25.99 and 29.48%, respectively. Moreover, the total soluble sugar content of berries was 19.03 obrix and 16 obrix in treated and control plants, respectively, at the maturity stage. CONCLUSIONS: This is the first elucidative study targeting the fungal diversity of conventional and root-restricted cultivation techniques in a single vineyard. Species richness and diversity are affected by stressful cultivation known as root zone restriction. There is an association between the abundance of Aspergillus spp. and fruit quality because despite causing stress to the grapevine, superior quality of fruit is retrieved in root-zone restricted plants.


Assuntos
Fungos/isolamento & purificação , Micobioma , Raízes de Plantas/microbiologia , Vitis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Flores/microbiologia , Frutas/crescimento & desenvolvimento , Frutas/microbiologia , Fungos/classificação , Fungos/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Rizosfera , Microbiologia do Solo , Vitis/microbiologia
18.
Chem Eng J ; 425: 130635, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34149304

RESUMO

In the initial pandemic phase, effluents from wastewater treatment facilities were reported mostly free from Severe Acute Respiratory Coronavirus 2 (SARS-CoV-2) RNA, and thus conventional wastewater treatments were generally considered effective. However, there is a lack of first-hand data on i) comparative efficacy of various treatment processes for SARS-CoV-2 RNA removal; and ii) temporal variations in the removal efficacy of a given treatment process in the backdrop of active COVID-19 cases. This work provides a comparative account of the removal efficacy of conventional activated sludge (CAS) and root zone treatments (RZT) based on weekly wastewater surveillance data, consisting of forty-four samples, during a two-month period. The average genome concentration was higher in the inlets of CAS-based wastewater treatment plant (WWTP) in the Sargasan ward (1.25 × 103 copies/ L), than that of RZT-based WWTP (7.07 × 102 copies/ L) in an academic institution campus of Gandhinagar, Gujarat, India. ORF 1ab and S genes appeared to be more sensitive to treatment i.e., significantly reduced (p < 0.05) than N genes (p > 0.05). CAS treatment exhibited better RNA removal efficacy (p = 0.014) than RZT (p = 0.032). Multivariate analyses suggested that the effective genome concentration should be calculated based on the presence/absence of multiple genes. The present study stresses that treated effluents are not always free from SARS-CoV-2 RNA, and the removal efficacy of a given WWTP is prone to exhibit temporal variability owing to variations in active COVID-19 cases in the vicinity and genetic material accumulation over the time. Disinfection seems less effective than the adsorption and coagulation processes for SARS-CoV-2 removal. Results stress the need for further research on mechanistic insight on SARS-CoV-2 removal through various treatment processes taking solid-liquid partitioning into account.

19.
Ecotoxicology ; 30(2): 292-310, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33496898

RESUMO

The aim of this study was to determine the influence of heavy metals on biological soil quality assessments in Vaccinium myrtillus L. rhizosphere soil as well as in non-rhizosphere soil from different polluted sites. The presented study was also conducted in order to determine any differences in the soil physicochemical and biological properties between the Vaccinium rhizosphere soil and the non-rhizosphere soil. The content of heavy metals and their potential bioavailability, content of macronutrients, physicochemical soil properties, activity of six soil enzymes and microarthropod communities were determined. Soil organic matter, the levels of C, N and all the studied macronutrients and almost all enzyme activity were significantly higher in the rhizosphere soil than in the non-rhizosphere soil. At the most contaminated site, the content of heavy metals was also higher in the rhizosphere soil, but their bioavailability was lower than in the non-rhizosphere soil. The ß-glucosidase and urease activity in the soil correlated most negatively with the examined metals. The levels of two enzymes were also strongly impacted by the organic matter-the C and N levels and pH. The number of microarthropods as well as the QBS (soil biological quality index) and FEMI (abundance-based fauna index) were higher in the rhizosphere soil. The bilberry rhizosphere soil had stronger correlation coefficient values between the measured parameters than the non-rhizosphere soil, which suggests that rhizosphere soil is more sensitive and could be used in the monitoring and assessment of forest ecosystems. ß-glucosidase and urease were the most sensitive indicators of the adverse impact of Cd, Zn and Pb. The FEMI index seems to be a better indicator than the QBS for identifying differences in soil quality.


Assuntos
Metais Pesados , Poluentes do Solo , Vaccinium myrtillus , Ecossistema , Metais Pesados/análise , Metais Pesados/toxicidade , Rizosfera , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
20.
J Hydrol (Amst) ; 602: 1-12, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34987269

RESUMO

Simulating water moisture flow in variably saturated soils with a relatively shallow water table is challenging due to the high nonlinear behavior of Richards' equation (RE). A two-layer approximation of RE was derived in this paper, which describes vertically-averaged soil moisture content and flow dynamics in the root zone and the unsaturated soil below. To this end, the partial differential equation (PDE) describing RE was converted into two-coupled ordinary differential equations (ODEs) describing dynamic vertically-averaged soil moisture variations in the two soil zones subject to a deep or shallow water table in addition to variable soil moisture flux and pressure conditions at the surface. The coupled ODEs were solved numerically using the iterative Huen's method for a variety of flux and pressure-controlled top and bottom boundary conditions (BCs). The numerical model was evaluated for three typical soil textures with free-drainage and mixed flux-pressure head at the bottom boundary under various atmospheric conditions. The results of soil water contents and fluxes were validated using HYDRUS-1D as a benchmark. Simulated values showed that the new model is numerically stable and generally accurate in simulating vertically-averaged soil moisture in the two layers under various flux and prescribed pressure BCs. A hypothetical simulation scenario involving desaturation of initially saturated soil profile caused by exponentially declining water table demonstrated the robustness of the numerical model in tracking vertically-averaged moisture contents in the roots layer and the lower vadose soil as the water table continued to fall. The two-layer model can be used by researchers to simulate variably saturated soils in wetlands and by water resources planners for efficient coupling of land-surface systems to groundwater and management of conjunctive use of surface and groundwater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA