Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Syst Biol ; 73(3): 623-628, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38366939

RESUMO

Molecular sequence data from rapidly evolving organisms are often sampled at different points in time. Sampling times can then be used for molecular clock calibration. The root-to-tip (RTT) regression is an essential tool to assess the degree to which the data behave in a clock-like fashion. Here, we introduce Clockor2, a client-side web application for conducting RTT regression. Clockor2 allows users to quickly fit local and global molecular clocks, thus handling the increasing complexity of genomic datasets that sample beyond the assumption of homogeneous host populations. Clockor2 is efficient, handling trees of up to the order of 104 tips, with significant speed increases compared with other RTT regression applications. Although clockor2 is written as a web application, all data processing happens on the client-side, meaning that data never leave the user's computer. Clockor2 is freely available at https://clockor2.github.io/.


Assuntos
Classificação , Software , Classificação/métodos , Filogenia , Análise de Regressão
2.
J Genet Genomics ; 51(7): 762-768, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38417547

RESUMO

The molecular clock model is fundamental for inferring species divergence times from molecular sequences. However, its direct application may introduce significant biases due to sequencing errors, recombination events, and inaccurately labeled sampling times. Improving accuracy necessitates rigorous quality control measures to identify and remove potentially erroneous sequences. Furthermore, while not all branches of a phylogenetic tree may exhibit a clear temporal signal, specific branches may still adhere to the assumptions, with varying evolutionary rates. Supporting a relaxed molecular clock model better aligns with the complexities of evolution. The root-to-tip regression method has been widely used to analyze the temporal signal in phylogenetic studies and can be generalized for detecting other phylogenetic signals. Despite its utility, there remains a lack of corresponding software implementations for broader applications. To address this gap, we present shinyTempSignal, an interactive web application implemented with the shiny framework, available as an R package and publicly accessible at https://github.com/YuLab-SMU/shinyTempSignal. This tool facilitates the analysis of temporal and other phylogenetic signals under both strict and relaxed models. By extending the root-to-tip regression method to diverse signals, shinyTempSignal helps in the detection of evolving features or traits, thereby laying the foundation for deeper insights and subsequent analyses.


Assuntos
Filogenia , Software , Evolução Molecular
3.
Virus Evol ; 9(1): veac120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632480

RESUMO

The composition of the latent human immunodeficiency virus 1 (HIV-1) reservoir is shaped by when proviruses integrated into host genomes. These integration dates can be estimated by phylogenetic methods like root-to-tip (RTT) regression. However, RTT does not accommodate variation in the number of mutations over time, uncertainty in estimating the molecular clock, or the position of the root in the tree. To address these limitations, we implemented a Bayesian extension of RTT as an R package (bayroot), which enables the user to incorporate prior information about the time of infection and start of antiretroviral therapy. Taking an unrooted maximum likelihood tree as input, we use a Metropolis-Hastings algorithm to sample from the joint posterior distribution of three parameters (the rate of sequence evolution, i.e., molecular clock; the location of the root; and the time associated with the root). Next, we apply rejection sampling to this posterior sample of model parameters to simulate integration dates for HIV proviral sequences. To validate this method, we use the R package treeswithintrees (twt) to simulate time-scaled trees relating samples of actively and latently infected T cells from a single host. We find that bayroot yields significantly more accurate estimates of integration dates than conventional RTT under a range of model settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA