Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Artif Organs ; 47(4): 680-694, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36524792

RESUMO

BACKGROUND: The purpose of this research is to address ongoing device shortfalls for pediatric patients by developing a novel pediatric hybrid total artificial heart (TAH). The valveless magnetically-levitated MCS device (Dragon Heart) has only two moving parts, integrates an axial and centrifugal blood pump into a single device, and will occupy a compact footprint within the chest for the pediatric patient population. METHODS: Prior work on the Dragon Heart focused on the development of pump designs to achieve hemodynamic requirements. The impeller of these pumps was shaft-driven and thus could not be integrated for testing. The presented research leverages an existing magnetically levitated axial flow pump and focuses on centrifugal pump development. Using the axial pump diameter as a geometric constraint, a shaftless, magnetically supported centrifugal pump was designed for placement circumferentially around the axial pump domain. The new design process included the computational analysis of more than 50 potential centrifugal impeller geometries. The resulting centrifugal pump designs were prototyped and tested for levitation and no-load rotation, followed by in vitro testing using a blood analog. To meet physiologic demands, target performance goals were pressure rises exceeding 90 mm Hg for flow rates of 1-5 L/min with operating speeds of less than 5000 RPM. RESULTS: Three puck-shaped, channel impellers for the centrifugal blood pump were selected based on achieving performance and space requirements for magnetic integration. A quasi-steady flow analysis revealed that the impeller rotational position led to a pulsatile component in the pressure generation. After prototyping, the centrifugal prototypes (3, 4, and 5 channeled designs) demonstrated levitation and no-load rotation. Hydraulic experiments established pressure generation capabilities beyond target requirements. The pressure-flow performance of the prototypes followed expected trends with a dependence on rotational speed. Pulsatile blood flow was observed without pump-speed modulation due to rotating channel passage frequency. CONCLUSION: The results are promising in the advancement of this pediatric TAH. The channeled impeller design creates pressure-flow curves that are decoupled from the flow rate, a benefit that could reduce the required controller inputs and improve treatment of hypertensive patients.


Assuntos
Coração Artificial , Coração Auxiliar , Criança , Humanos , Imãs , Desenho de Prótese , Fluxo Pulsátil , Magnetismo , Desenho de Equipamento
2.
J Artif Organs ; 25(3): 195-203, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35088287

RESUMO

Plasma skimming can exclude red blood cells from high shear regions in the gaps formed by hydrodynamic bearings in rotary blood pumps. We investigated the effect of the gap size and groove design on the plasma skimming efficiency. Spiral groove bearings (SGBs) were installed into a specially designed test rig for in vitro experiments performed using human blood. The measured gap between the ridges of the bearing and the rotor surface was 17-26 µm at a flow rate of 150 ml/min and a rotor speed of 2400 rpm. Three different patterns of SGBs were designed (SGB-0, SGB-30, and SGB-60) with various degrees of the circumferential component. The hematocrit measured by a high-speed camera was compared with the hematocrit in the circuit, and the plasma skimming efficiency for the three bearing patterns was evaluated at hematocrits of 20%, 25%, and 30%. SGB-60, which had the strongest circumferential component, provided the best plasma skimming efficiency. When the gap size was less than 20 µm, the red blood cells in the gaps between the ridges of the bearing and rotor surface reduced significantly and the efficiency became higher than 90%. The gap size had the strongest effect on producing a significant plasma skimming. The plasma skimming efficiency can be significantly improved by optimizing the bearing gap size and groove design, which facilitates the further development of SGBs for use in applications such as rotary blood pumps.


Assuntos
Circulação Assistida , Coração Auxiliar , Desenho de Equipamento , Eritrócitos , Hematócrito , Hemólise , Humanos , Hidrodinâmica
3.
Artif Organs ; 45(2): 124-134, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32813920

RESUMO

We have studied the cardiac beat synchronization (CBS) control for a rotary blood pump (RBP) and revealed that it can promote pulsatility and reduce cardiac load. Besides, patients with LVAD support sometimes suffer from aortic and mitral regurgitation (AR and MR). A control method for the RBP should be validated in wider range of conditions to clarify its benefits and pitfalls prior to clinical application. In this study, we evaluated pulsatility and cardiac load reduction obtained with the CBS control on valvular failure conditions with a mathematical model. Diastolic assist could reduce cardiac load on the left ventricle by decreasing external work of the ventricle even in MR cases while it was not so effective in AR cases. Systolic assist can still promote pulsatility in AR and MR cases; however, aortic valve function should be carefully confirmed since pulse pressure can be wider not due to systolic assist but to AR.


Assuntos
Insuficiência da Valva Aórtica/prevenção & controle , Insuficiência Cardíaca/cirurgia , Coração Auxiliar/efeitos adversos , Insuficiência da Valva Mitral/prevenção & controle , Modelos Cardiovasculares , Insuficiência da Valva Aórtica/etiologia , Insuficiência da Valva Aórtica/fisiopatologia , Pressão Sanguínea/fisiologia , Diástole/fisiologia , Insuficiência Cardíaca/fisiopatologia , Frequência Cardíaca/fisiologia , Ventrículos do Coração/fisiopatologia , Humanos , Insuficiência da Valva Mitral/etiologia , Insuficiência da Valva Mitral/fisiopatologia , Fluxo Pulsátil , Sístole/fisiologia , Função Ventricular Esquerda/fisiologia
4.
Artif Organs ; 45(5): E65-E78, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33191508

RESUMO

There continues to be limited, viable ventricular assist device technology options to support the dysfunctional states of pediatric heart failure. To address this need, we are developing a magnetically suspended, versatile pumping technology that uniquely integrates two blood pumps in a series configuration within a single device housing. This device enables operational switching from the usage of one pump to another as needed for clinical management or to support growth and development of the pediatric patient. Here, we present the initial design where we conducted a virtual fit study, the Taguchi Design Optimization Method, iterative design to develop pump geometries. Computational tools were used to estimate the pressure generation, capacity delivery, hydraulic efficiency, fluid stress levels, exposure time to stresses, blood damage index, and fluid forces on the impellers. Prototypes of the pumps were tested in a flow loop using a water-glycerin solution. Both designs demonstrated the capability to generate target pressures and flows. Blood damage estimations were below threshold levels and achieved design requirements; however, maximum scalar stress levels were above the target limit. Radial and axial forces were less than 1 N and 10 N, respectively. The performance data trends for physical prototypes correlated with theoretical expectations. The centrifugal prototype was able to generate slightly higher pressure rises than numerical predictions. In contrast, the axial prototype outperformed the computational studies. Experimental data were both repeatable and reproducible. The findings from this research are promising, and development will continue.


Assuntos
Desenho Assistido por Computador , Insuficiência Cardíaca/cirurgia , Coração Auxiliar , Desenho de Prótese/métodos , Criança , Humanos
5.
Artif Organs ; 44(6): 584-593, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31912510

RESUMO

With the incidence of end-stage heart failure steadily increasing, the need for a practical total artificial heart (TAH) has never been greater. Continuous flow TAHs (CFTAH) are being developed using rotary blood pumps (RBPs), leveraging their small size, mechanical simplicity, and excellent durability. To completely replace the heart with currently available RBPs, two are required; one for providing pulmonary flow and one for providing systemic flow. To prevent hazardous states, it is essential to maintain balance between the pulmonary and systemic circulation at a wide variety of physiologic states. In this study, we investigated factors determining a CFTAH's inherent ability to balance systemic and pulmonary flow passively, without active management of pump rotational speed. Four different RBPs (ReliantHeart HA5, Thoratec HMII, HeartWare HVAD, and Ventracor VentrAssist) were used in various combinations to construct CFTAHs. Each CFTAH's ability to autonomously maintain pressures and flows within defined ranges was evaluated in a hybrid mock loop as systemic and pulmonary vascular resistance (PVR) were changed. The resistance box, a method to quantify the range of vascular resistances that can be safely supported by a CFTAH, was used to compare different CFTAH configurations in an efficient and predictive way. To reduce the need for future in vitro tests and to aid in their analysis, a novel analytical evaluation to predict the resistance box of various CFTAH configurations was also performed. None of the investigated CFTAH configurations fully satisfied the predefined benchmarks for inherent flow balancing, with the VentrAssist (left) and HeartAssist 5 (right) offering the best combination. The extent to which each CFTAH was able to autonomously maintain balance was determined by the pressure sensitivity of each RPB: the sensitivity of outflow to changes in the pressure head. The analytical model showed that by matching left and right pressure sensitivity the inherent balancing performance can be improved. These findings may ultimately lead to a reduced need for manual speed changes or active control systems.


Assuntos
Circulação Sanguínea/fisiologia , Desenho de Equipamento , Insuficiência Cardíaca/cirurgia , Coração Artificial , Modelos Cardiovasculares , Hemodinâmica/fisiologia , Humanos , Circulação Pulmonar
6.
Artif Organs ; 43(3): E16-E27, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30094842

RESUMO

Rotary ventricular assist devices (VADs) are less sensitive to preload than the healthy heart, resulting in inadequate flow regulation in response to changes in patient cardiac demand. Starling-like physiological controllers (SLCs) have been developed to automatically regulate VAD flow based on ventricular preload. An SLC consists of a cardiac response curve (CRC) which imposes a nonlinear relationship between VAD flow and ventricular preload, and a venous return line (VRL) which determines the return path of the controller. This study investigates the importance of a physiological VRL in SLC of dual rotary blood pumps for biventricular support. Two experiments were conducted on a physical mock circulation loop (MCL); the first compared an SLC with an angled physiological VRL (SLC-P) against an SLC with a vertical VRL (SLC-V). The second experiment quantified the benefit of a dynamic VRL, represented by a series of specific VRLs, which could adapt to different circulatory states including changes in pulmonary (PVR) and systemic (SVR) vascular resistance versus a fixed physiological VRL which was calculated at rest. In both sets of experiments, the transient controller responses were evaluated through reductions in preload caused by the removal of fluid from the MCL. The SLC-P produced no overshoot or oscillations following step changes in preload, whereas SLC-V produced 0.4 L/min (12.5%) overshoot for both left and right VADs. Additionally, the SLC-V had increased settling time and reduced controller stability as evidenced by transient controller oscillations. The transient results comparing the specific and standard VRLs demonstrated that specific VRL rise times were improved by between 1.2 and 4.7 s ( x ¯ = 3.05 s), while specific VRL settling times were improved by between 2.8 and 16.1 seconds ( x ¯ = 8.38 s) over the standard VRL. This suggests only a minor improvement in controller response time from a dynamic VRL compared to the fixed VRL. These results indicate that the use of a fixed physiologically representative VRL is adequate over a wide variety of physiological conditions.


Assuntos
Circulação Sanguínea/fisiologia , Desenho de Equipamento , Coração Auxiliar , Débito Cardíaco/fisiologia , Simulação por Computador , Humanos , Fatores de Tempo , Veias/fisiologia
7.
Artif Organs ; 43(11): 1055-1064, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31162850

RESUMO

Mechanical circulatory support (MCS) devices for pediatric patients continue to lag in development behind those for adults. There is no heart pump with the design innovation to support dysfunctional states of heart failure and the anatomic heterogeneity of cardiac defects in pediatric patients. To address this unmet need, we are developing a versatile MCS technology with 2 separate blood pumps under 1 housing, whereby a centrifugal pump rotates around an axial pump. In this study, we advanced the design with a new inducer for the axial pump component and flat inlet volute for the centrifugal pump component. We conducted computational modeling of the design iterations, built prototypes, and tested their performance. The axial pump component was able to generate pressure rises of 1-112 mm Hg for 2-5 L/min at 10 000-14 000 RPM, and the centrifugal pump component produced pressure rises of 1-184 mm Hg for 2-5 L/min at 1750-3000 RPM. Shear stresses and blood damage estimations were less than  490 Pa and 0.5%, respectively. Axial and radial forces were also estimated to be less than 5 N for the axially and radially centered impellers. Data sets were repeatable, and data trends followed theoretical expectations. The new designs for the axial and centrifugal pumps enabled us to reduce the height of the pump while maintaining performance expectations. These findings support the continued development of this new medical device for pediatric patients.


Assuntos
Coração Auxiliar , Criança , Simulação por Computador , Cardiopatias Congênitas/terapia , Insuficiência Cardíaca/terapia , Hemólise , Humanos , Hidrodinâmica , Modelos Cardiovasculares , Desenho de Prótese , Estresse Mecânico
8.
Artif Organs ; 43(11): E294-E307, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31188476

RESUMO

Rotary ventricular assist devices (VADs) operated clinically under constant speed control (CSC) cannot respond adequately to changes in patient cardiac demand, resulting in sub-optimal VAD flow regulation. Starling-like control (SLC) of VADs mimics the healthy ventricular flow regulation and automatically adjusts VAD speed to meet varying patient cardiac demand. The use of a fixed control line (CL - the relationship between ventricular preload and VAD flow) limits the flow regulating capability of the controller, especially in the case of exercise. Adaptive SLC (ASLC) overcomes this limitation by allowing the controller to adapt the CL to meet a diverse range of circulatory conditions. This study evaluated ASLC, SLC and CSC in a biventricular supported mock circulation loop under the simulated conditions of exercise, sleep, fluid loading and systemic hypertension. Each controller was evaluated on its ability to remain within predefined limits of VAD flow, preload, and afterload. The ASLC produced superior cardiac output (CO) during exercise (10.1 L/min) compared to SLC (7.3 L/min) and CSC (6.3 L/min). The ASLC produced favourable haemodynamics during sleep, fluid loading and systemic hypertension and could remain within a predefined haemodynamic range in three out of four simulations, suggesting improved haemodynamic performance over SLC and CSC.


Assuntos
Coração Auxiliar , Hemodinâmica , Débito Cardíaco , Simulação por Computador , Exercício Físico , Humanos , Modelos Cardiovasculares , Sono
9.
J Artif Organs ; 22(4): 276-285, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31327062

RESUMO

We studied a control method of rotary blood pumps (RBPs), which is called as the cardiac beat synchronization (CBS) system. Usually, RBPs operate at constant target rotational speed, meanwhile, the CBS system modulates target speed synchronizing with cardiac beat. We built a computer simulation method to evaluate the CBS system. This simulator acquires a mathematical model of a circulatory system including a RBP and can provide us the theoretical hemodynamics when our control method is applied. We compared theoretical results with experimental ones with the model focusing on both pulsatility and aortic valve (AV) opening interval enhanced by the CBS system. Our simulator could reproduce behavior of the circulatory system whether the RBP is connected or not. Comparison among no RBP, constant assist, systolic assist, and diastolic assist modes indicated that pulsatility is enhanced with systolic assist theoretically. While systolic assist decreased AV opening interval, diastolic assist made it longer than the ones in other control strategies.


Assuntos
Valva Aórtica/fisiopatologia , Simulação por Computador , Frequência Cardíaca/fisiologia , Coração Auxiliar , Modelos Cardiovasculares , Diástole , Humanos , Fluxo Pulsátil , Sístole
10.
Biomed Eng Online ; 17(1): 142, 2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30342521

RESUMO

Rotary blood pumps (RBPs) are the newest generation of ventricular assist devices. Although their continuous flow characteristics have been accepted widely, more and more research has focused on the pulsatile modulation of RBPs in an attempt to provide better perfusion. In this study, we investigated the effects of an axial RBP serving as the right ventricular assist device on pulmonary hemodynamics and gas exchange using a numerical method with a complete cardiovascular model along with airway mechanics and a gas exchange model. The RBP runs in both constant speed and synchronized pulsatile modes using speed modulation. Hemodynamics and airway O2 and CO2 partial pressures were obtained under normal physiological conditions, and right ventricle failure conditions with or without RBP. Our results showed that the pulsatile mode of the RBP could support right ventricular assist to restore most hemodynamics. Using speed modulation, both pulmonary arterial pressure and flow pulsatility were increased, while there was only very little effect on alveolar O2 and CO2 partial pressures. This study could provide basic insight into the influence of pulmonary hemodynamics and gas exchange with speed modulated right ventricular assist RBPs, which is concerned when designing their pulsatile control methods.


Assuntos
Coração Auxiliar , Hemodinâmica , Modelos Cardiovasculares , Artéria Pulmonar/fisiologia , Troca Gasosa Pulmonar , Fenômenos Biomecânicos , Dióxido de Carbono/metabolismo , Oxigênio/metabolismo
11.
Artif Organs ; 42(1): 31-40, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28741841

RESUMO

Right ventricular failure is a common complication associated with rotary left ventricular assist device (LVAD) support. Currently, there is no clinically approved long-term rotary right ventricular assist device (RVAD). Instead, clinicians have implanted a second rotary LVAD as RVAD in biventricular support. To prevent pulmonary hypertension, the RVAD must be operated by either reducing pump speed or banding the outflow graft. These modes differ in hydraulic performance, which may affect the pulmonary valve opening (PVO) and subsequently cause fusion, valvular insufficiency, and thrombus formation. This study aimed to compare PVO with the RVAD operated at reduced speed or with a banded outflow graft. Baseline conditions of systemic normal, hypo, and hypertension with severe biventricular failure were simulated in a mock circulation loop. Biventricular support was provided with two rotary VentrAssist LVADs with cardiac output restored to 5 L/min in banded outflow and reduced speed conditions, and systemic and pulmonary vascular resistances (PVR) were manipulated to determine the range of conditions that allowed PVO without causing left ventricular suction. Finally, RVAD sine wave speed modulation (±550 rpm) strategies (co- and counter-pulsation) were implemented to observe the effect on PVO. For each condition, outflow banding had higher PVR (97 ± 20 dyne/s/cm5 higher) for when the pulmonary valve closed compared to reduced speed. In addition, counter-pulsation demonstrated greater PVO than co-pulsation and constant speed. For the purpose of reducing the risks of pulmonary valve insufficiency, fusion, and thrombotic event, this study recommends a RVAD with a steeper H-Q gradient by banding and further exploration of RVAD speed modulation.


Assuntos
Suporte Vital Cardíaco Avançado/métodos , Insuficiência Cardíaca/cirurgia , Coração Auxiliar/efeitos adversos , Modelos Cardiovasculares , Enxerto Vascular/métodos , Suporte Vital Cardíaco Avançado/efeitos adversos , Suporte Vital Cardíaco Avançado/instrumentação , Insuficiência Cardíaca/complicações , Ventrículos do Coração/fisiopatologia , Ventrículos do Coração/cirurgia , Humanos , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/prevenção & controle , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/fisiopatologia , Complicações Pós-Operatórias/prevenção & controle , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/transplante , Valva Pulmonar/fisiopatologia , Valva Pulmonar/cirurgia , Resistência Vascular , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/fisiopatologia , Disfunção Ventricular Direita/prevenção & controle
12.
Artif Organs ; 42(4): 432-443, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29508416

RESUMO

In this work, the study results of an implantable pediatric rotary blood pump (PRBP) are presented. They show the results of the numerical simulation of fluid flow rates in the pump. The determination method of the backflows and stagnation regions is represented. The operating points corresponding to fluid flow rates of 1, 3, and 5 L/min for 75-80 mm Hg pressure head are investigated. The study results have shown that use of the pump in the 1 L/min operating point can potentially lead to the appearance of backflows and stagnation regions. In the case of using pumps in fluid flow rates ranging from 3 to 5 L/min, the number of stagnation regions decreases and the fluid flow rate changes marginally. Using the pump in this flow rate range is considered judicious. The study shows an increase in shear stress with an increase in fluid flow rates, while there is no increase in shear stress above the critical condition of 150 Pa (which does not allow us to reliably speak about the increased risk of blood cell damage). The aim of this work was to design, prototype, and study interaction of the Sputnik PRBP with the cardiovascular system. A three-dimensional model of Sputnik PRBP was designed with the following geometrical specifications: flow unit length of 51.5 mm, flow unit diameter of 10 mm, and spacing between the rotor and housing of 0.1 mm. Computational fluid dynamics studies were used to calculate head pressure-flow rate (H-Q) curves at rotor speeds ranging from 10 000 to 14 000 rpm (R2 = 0.866 between numerical simulation and experiment) and comparing flow patterns at various points of the flow rate operating range (1, 3, and 5 L/min) for operating pressures ranging from 75 to 80 mm Hg. It is noted that when fluid flow rate changes from 1 L/min to 3 L/min, significant changes are observed in the distribution of zero flow zones. At the inlet and outlet of the pump, when going to the operating point of 3 L/min, zones of stagnation become minuscule. The shear stress distribution was calculated along the pump volume. The volume in which shear stress exceed 150 Pa is less than 0.38% of the total pump volume at flow rates of 1, 3, and 5 L/min. In this study, a mock circulatory system (MCS) allowing simulation of physiological cardiovascular characteristics was used to investigate the interaction of the Sputnik PRBP with the cardiovascular system. MCS allows reproducing the Frank-Starling autoregulation mechanism of the heart. PRBP behavior was tested in the speed range of 6 000 to 15 000 rpm. Decreased contractility can be expressed in a stroke volume decrease approximately from 18 to 4 mL and ventricle systolic pressure decrease approximately from 92 to 20 mm Hg. The left ventricle becomes fully supported at a pump speed of 10 000 rpm. At a pump speed of 14 000 rpm, the left ventricle goes into a suction state in which fluid almost does not accumulate in the ventricle and only passes through it to the pump. The proposed PRBP showed potential for improved clinical outcomes in pediatric patients with a body surface area greater than 0.6 m2 and weight greater than 12 kg.


Assuntos
Desenho de Equipamento , Coração Auxiliar/efeitos adversos , Modelos Cardiovasculares , Estresse Mecânico , Velocidade do Fluxo Sanguíneo , Criança , Insuficiência Cardíaca/cirurgia , Hemólise , Humanos , Hidrodinâmica , Volume Sistólico
13.
Artif Organs ; 42(5): 500-509, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29349805

RESUMO

Clinical studies using total artificial hearts (TAHs) have demonstrated that pediatric and adult patients derive quality-of-life benefits from this form of therapy. Two clinically-approved TAHs and other pumps under development, however, have design challenges and limitations, including thromboembolic events, neurologic impairment, infection risk due to large size and percutaneous drivelines, and lack of ambulation, to name a few. To address these limitations, we are developing a hybrid-design, continuous-flow, implantable or extracorporeal, magnetically-levitated TAH for pediatric and adult patients with heart failure. This TAH has only two moving parts: an axial impeller for the pulmonary circulation and a centrifugal impeller for the systemic circulation. This device will utilize the latest generation of magnetic bearing technology. Initial geometries were established using pump design equations, and computational modeling provided insight into pump performance. The designs were the basis for prototype manufacturing and hydraulic testing. The study results demonstrate that the TAH is capable of delivering target blood flow rates of 1-6.5 L/min with pressure rises of 1-92 mm Hg for the pulmonary circulation and 24-150 mm Hg for the systemic circulation at 1500-10 000 rpm. This initial design of the TAH was successful and serves as the foundation to continue its development as a novel, more compact, nonthrombogenic, and effective therapeutic alternative for infants, children, adolescents, and adults with heart failure.


Assuntos
Coração Artificial , Adolescente , Adulto , Algoritmos , Velocidade do Fluxo Sanguíneo , Criança , Simulação por Computador , Desenho de Equipamento , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Coração Artificial/efeitos adversos , Humanos , Lactente , Modelos Cardiovasculares
14.
Artif Organs ; 42(5): 510-515, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29341175

RESUMO

The HeartWare HVAD is a radial rotary blood pump with a combination of passive magnetic and hydrodynamic bearings to levitate the impeller. The axial gap size between impeller and housing in this bearing and its sensitivity to speed, flow, and pressure difference is difficult to assess. Shear stresses are exceptionally high in this tiny gap making it important for blood damage and related adverse events. Therefore, the aim of this study was to measure the axial gap clearance in the HVAD at different operating conditions employing radiography. To quantify the gap size in the HVAD, the pump was positioned 30 mm in front of the X-ray source employing a microfocus X-ray tube with an acceleration voltage up to 300 kV. Beams were detected on a flat panel detector (Perkin Elmer XRD 1611-CP3). The pump was connected to a tubing circuit with a throttle to adjust flow (0, 5, 10 L/min) and a water glycerol mixture to set the desired viscosity (1, 4, 8 mPas). Rotational speed was varied between 1800 and 3600 rpm. In this study, for clinically relevant conditions at 5 L/min and 2700 rpm, the axial gap was 22 µm. The gap size increased with rotational speeds dependent on the viscosity (2.8, 6.9, and 9.4 µm/1000 rpm for 1, 4, and 8 mPas, respectively), but was independent from the volume flow and the pressure head at constant speeds. In summary, using X-ray radiographic imaging small gaps in a rotary blood pump during operation can be measured in a nondestructive contact-free way. The axial hydrodynamic bearing gap in the HVAD pump was determined to be in the range of about three times the diameter of a red blood cell. Its dependence on operating volume flow and generated pressure head across the pump is not pronounced.


Assuntos
Coração Auxiliar , Hidrodinâmica , Magnetismo/instrumentação , Desenho de Equipamento , Humanos , Radiografia , Estresse Mecânico , Raios X
15.
Artif Organs ; 42(9): 879-890, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29726019

RESUMO

Although rotary blood pumps (RBPs) sustain life, blood exposure to continuous supra-physiological shear stress induces adverse effects (e.g., thromboembolism); thus, pulsatile flow in RBPs represents a potential solution. The present study introduced pulsatile flow to the HeartWare HVAD using a custom-built controller and compared hemocompatibility biomarkers (i.e., platelet aggregation, concentrations for ADAMTS13, von Willebrand factor (vWf), and free-hemoglobin in plasma (pfHb), red blood cell (RBC) deformability, and RBC-nitric oxide synthase (NOS) activity) between continuous and pulsatile flow in a blood circulation loop over 5 h. The HeartWare HVAD was operated using a custom-built controller, at continuous speed (3282 rev/min) or in a pulsatile mode (mean speed = 3273 rev/min, amplitude = 430 rev/min, frequency = 1 Hz) to generate a blood flow rate of 5.0 L/min, HVAD differential pressure of 90 mm Hg for continuous flow and 92 mm Hg for pulsatile flow, and systolic and diastolic pressures of 121/80 mm Hg. For both flow regimes, the current study found; (i) ADP- and collagen-induced platelet aggregation, and ADAMTS13 concentration significantly decreased after 5 h (P < 0.01; P < 0.05), (ii) ristocetin-induced platelet aggregation significantly increased after 45 min (P < 0.05), (iii) vWf concentration did not significantly differ at any time point, (iv) pfHb significantly increased after 5 h (P < 0.01), (v) RBC deformability improved during the continuous flow regime (P < 0.05) but not during pulsatile flow, and (vi) RBC-NOS activity significantly increased during continuous flow (15 min), and pulsatile flow (5 h; P < 0.05). The current study demonstrated: (i) speed modulation does not improve hemocompatibility of the HeartWare HVAD based on no observable differences being detected for routine biomarkers, and (ii) the time-course for increased RBC-NOS activity observed during continuous flow may have improved RBC deformability.


Assuntos
Eritrócitos/fisiologia , Coração Auxiliar , Hemodinâmica/fisiologia , Adulto , Deformação Eritrocítica , Humanos , Masculino , Modelos Cardiovasculares , Fluxo Pulsátil/fisiologia , Reologia , Estresse Mecânico
16.
Artif Organs ; 41(10): 911-922, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28741664

RESUMO

Rotary ventricular assist devices (VADs) are used to provide mechanical circulatory support. However, their lack of preload sensitivity in constant speed control mode (CSC) may result in ventricular suction or venous congestion. This is particularly true of biventricular support, where the native flow-balancing Starling response of both ventricles is diminished. It is possible to model the Starling response of the ventricles using cardiac output and venous return curves. With this model, we can create a Starling-like physiological controller (SLC) for VADs which can automatically balance cardiac output in the presence of perturbations to the circulation. The comparison between CSC and SLC of dual HeartWare HVADs using a mock circulation loop to simulate biventricular heart failure has been reported. Four changes in cardiovascular state were simulated to test the controller, including a 700 mL reduction in circulating fluid volume, a total loss of left and right ventricular contractility, reduction in systemic vascular resistance ( SVR) from 1300 to 600 dyne  s/cm5, and an elevation in pulmonary vascular resistance ( PVR) from 100 to 300 dyne  s/cm5. SLC maintained the left and right ventricular volumes between 69-214 mL and 29-182 mL, respectively, for all tests, preventing ventricular suction (ventricular volume = 0 mL) and venous congestion (atrial pressures > 20 mm Hg). Cardiac output was maintained at sufficient levels by the SLC, with systemic and pulmonary flow rates maintained above 3.14 L/min for all tests. With the CSC, left ventricular suction occurred during reductions in SVR, elevations in PVR, and reduction in circulating fluid simulations. These results demonstrate a need for a physiological control system and provide adequate in vitro validation of the immediate response of a SLC for biventricular support.


Assuntos
Simulação por Computador , Coração Auxiliar , Hemodinâmica , Modelos Cardiovasculares , Volume Sanguíneo , Débito Cardíaco , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Ventrículos do Coração/fisiopatologia , Coração Auxiliar/efeitos adversos , Humanos , Desenho de Prótese , Resistência Vascular
17.
Artif Organs ; 40(3): 233-42, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26333131

RESUMO

An intravascular axial flow pump is being developed as a mechanical cavopulmonary assist device for adolescent and adult patients with dysfunctional Fontan physiology. Coupling computational modeling with experimental evaluation of prototypic designs, this study examined the hydraulic performance of 11 impeller prototypes with blade stagger or twist angles varying from 100 to 600 degrees. A refined range of twisted blade angles between 300 and 400 degrees with 20-degree increments was then selected, and four additional geometries were constructed and hydraulically evaluated. The prototypes met performance expectations and produced 3-31 mm Hg for flow rates of 1-5 L/min for 6000-8000 rpm. A regression analysis was completed with all characteristic coefficients contributing significantly (P < 0.0001). This analysis revealed that the impeller with 400 degrees of blade twist outperformed the other designs. The findings of the numerical model for 300-degree twisted case and the experimental results deviated within approximately 20%. In an effort to simplify the impeller geometry, this work advanced the design of this intravascular cavopulmonary assist device closer to preclinical animal testing.


Assuntos
Técnica de Fontan/instrumentação , Coração Auxiliar , Adolescente , Adulto , Simulação por Computador , Cardiopatias Congênitas/cirurgia , Hemodinâmica , Humanos , Hidrodinâmica , Modelos Cardiovasculares , Pressão , Desenho de Prótese
18.
Artif Organs ; 40(9): 824-33, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27645393

RESUMO

Unlike the earlier reciprocating volume displacement-type pumps, rotary blood pumps (RBPs) typically operate at a constant rotational speed and produce continuous outflow. When RBP technology is used in constructing a total artificial heart (TAH), the pressure waveform that the TAH produces is flat, without the rise and fall associated with a normal arterial pulse. Several studies have suggested that pulseless circulation may impair microcirculatory perfusion and the autoregulatory response and may contribute to adverse events such as gastrointestinal bleeding, arteriovenous malformations, and pump thrombosis. It may therefore be beneficial to attempt to reproduce pulsatile output, similar to that generated by the native heart, by rapidly modulating the speed of an RBP impeller. The choice of an appropriate speed profile and control strategy to generate physiologic waveforms while minimizing power consumption and blood trauma becomes a challenge. In this study, pump operation modes with six different speed profiles using the BiVACOR TAH were evaluated in vitro. These modes were compared with respect to: hemodynamic pulsatility, which was quantified as surplus hemodynamic energy (SHE); maximum rate of change of pressure (dP/dt); pulse power index; and motor power consumption as a function of pulse pressure. The results showed that the evaluated variables underwent different trends in response to changes in the speed profile shape. The findings indicated a possible trade-off between SHE levels and flow rate pulsatility related to the relative systolic duration in the speed profile. Furthermore, none of the evaluated measures was sufficient to fully characterize hemodynamic pulsatility.


Assuntos
Coração Artificial , Hemodinâmica , Modelos Cardiovasculares , Pressão Sanguínea , Desenho de Equipamento , Coração Artificial/economia , Humanos , Microcirculação , Pressão , Fluxo Pulsátil
19.
Artif Organs ; 40(9): 834-41, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27645394

RESUMO

Continuous optical monitoring of thrombus formation in extracorporeal mechanical circulatory support (EMCS) devices will contribute to safe, long-term EMCS. A clinically applicable optical detector must be able to distinguish among the optical characteristics of oxygen saturation (SaO2 ), hematocrit (Hct), and thrombus formation. In vitro studies of spectral changes at wavelengths from 400 to 900 nm associated with SaO2 , Hct, and thrombus formed around the top pivot bearing of a Gyro C1E3 pump were conducted. Fresh porcine blood anticoagulated with sodium citrate was circulated in a mock circuit using the pump. The SaO2 , Hct, and anticoagulation activity were altered using an oxygenator, autologous plasma, and calcium chlorite injection, respectively. Light from a xenon lamp was guided by an incident fiber perpendicularly fixed on the top bearing. This light was scattered by blood pooled between the male and female pivots. The detection fiber was perpendicularly fixed against the incident fiber, and the side-scattered light was detected and guided to a spectrophotometer. As a result, light at two different wavelengths, 420 and 810 nm, was identified as suitable for thrombus detection because it was negligibly influenced by SaO2 and was able to detect the optical characteristics of fibrin. The light at these two wavelengths responded more quickly to thrombus formation than the inlet or outlet pressure, and flow rate change. The optical changes showed the changes in Hct around the top pivot bearing, which is caused by the reduction in density of fibrin-trapped red blood cells (RBCs) due to the RBCs being swept away by the surrounding blood flow. The proposed method was also able to detect fibrin production by extracting subtle differences in the optical characteristics between the Hct and thrombus formation.


Assuntos
Circulação Extracorpórea/efeitos adversos , Tecnologia de Fibra Óptica/instrumentação , Trombose/diagnóstico , Trombose/etiologia , Animais , Desenho de Equipamento , Circulação Extracorpórea/instrumentação , Hematócrito , Hemodinâmica , Suínos
20.
J Artif Organs ; 19(2): 204-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26608806

RESUMO

We previously developed a novel control system for a continuous-flow left ventricular assist device (LVAD), the EVAHEART, and demonstrated that sufficient pulsatility can be created by increasing its rotational speed in the systolic phase (pulsatile mode) in a normal heart animal model. In the present study, we assessed this system in its reliability and ability to follow heart rate variability. We implanted an EVAHEART via left thoracotomy into five goats for the Study for Fixed Heart Rate with ventricular pacing at 80, 100, 120 and 140 beats/min and six goats for the Study for native heart rhythm. We tested three modes: the circuit clamp, the continuous mode and the pulsatile mode. In the pulsatile mode, rotational speed was increased during the initial 35 % of the RR interval by automatic control based on the electrocardiogram. Pulsatility was evaluated by pulse pressure and dP/dt max of aortic pressure. As a result, comparing the pulsatile mode with the continuous mode, the pulse pressure was 28.5 ± 5.7 vs. 20.3 ± 7.9 mmHg, mean dP/dt max was 775.0 ± 230.5 vs 442.4 ± 184.7 mmHg/s at 80 bpm in the study for fixed heart rate, respectively (P < 0.05). The system successfully determined the heart rate to be 94.6 % in native heart rhythm. Furthermore, pulse pressure was 41.5 ± 7.9 vs. 27.8 ± 5.6 mmHg, mean dP/dt max was 716.2 ± 133.9 vs 405.2 ± 86.0 mmHg/s, respectively (P < 0.01). In conclusion, our newly developed the pulsatile mode for continuous-flow LVADs reliably provided physiological pulsatility with following heart rate variability.


Assuntos
Insuficiência Cardíaca/terapia , Frequência Cardíaca , Coração Auxiliar , Fluxo Pulsátil , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Eletrocardiografia , Cabras , Coração/fisiologia , Reprodutibilidade dos Testes , Sístole
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA