Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37430788

RESUMO

The total harmonic distortion (THD) index and its calculation methods are presented to calibrate the sinusoidal motion of the low-frequency angular acceleration rotary table (LFAART) and make up the incomprehensive evaluation based on the angular acceleration amplitude and frequency error indexes. The THD is calculated from two measurement schemes: a unique scheme combining the optical shaft encoder and the laser triangulation sensor and a regular scheme using the fiber optical gyroscope (FOG). An improved reversing moments recognition method is presented to upgrade the accuracy of solving the angular motion amplitude based on optical shaft encoder output. The field experiment shows that the difference in the THD values achieved using the combining scheme and FOG is within 0.11% when the signal-to-noise ratio of the FOG signal is higher than 7.7 dB, indicating the accuracy of the proposed methods and the feasibility of taking THD as the index.

2.
Sensors (Basel) ; 22(11)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35684891

RESUMO

The magnetic levitation system has been considered as a promising actuator in micromachining areas of study. In order to improve the tracking performance and disturbance rejection of the magnetically levitated rotary table, an iterative learning PID control strategy with disturbance compensation is proposed. The estimated disturbance compensates for the control signals to enhance the active disturbance rejection ability. The iterative learning control is used as a feed-forward unit to further reduce the trajectory tracking error. The convergence and stability of the iterative learning PID with disturbance compensation are analysed. A series of comparative experiments are carried out on the in-house, custom-made, magnetically levitated rotary table, and the experimental results highlight the superiority of the proposed control strategy. The iterative learning PID with disturbance compensation enables the magnetically levitated rotary table to realize good tracking performance with complex external disturbance. The proposed control strategy strengthens the applicability of magnetically levitated systems in the mechanism manufacturing area.


Assuntos
Coração Auxiliar , Magnetismo
3.
Sensors (Basel) ; 20(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322387

RESUMO

Rotary tables are often used to speed up the acquisition time during the 3D scanning of complex geometries. In order to avoid manual registration of the point clouds acquired with different orientations, automatic algorithms to compensate the rotation were developed. Alternatively, a proper calibration of the rotary axis with respect to the camera system is needed. Several methods are available in the literature, but they only consider a single-axis calibration. In this paper, a method for the simultaneous calibration of both axes of the table is proposed. A checkerboard is attached to the table, and several images with different poses are acquired. An optimization algorithm is then setup to determine the orientation and the locations of the two axes. A metric to assess the calibration quality was also defined by computing the average mean reprojection error. This metric is used to investigate the optimal number and distribution of the calibration poses, demonstrating that the optimum calibration results are achieved when a wider dispersion of the calibration poses is adopted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA