Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 105: 104376, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33099165

RESUMO

Quorum sensing, a common cell-to-cell communication system, is considered to have promising application in antibacterial therapy since they are expected to induce lower bacterial resistance than conventional antibiotics. However, most of present quorum sensing inhibitors have potent cell toxicity, which limits their application. In this study we evaluated the diverse quorum sensing inhibition activities of different biaromatic furanones and brominated pyrrolones. On this basis, we further designed and synthesized a new series of aryl-substituted pyrrolones 12a-12f. In the quorum sensing inhibition assay, compound 12a showed improved characteristics and low toxicity against human hepatocellular carcinoma cell. In particular, it can inhibit the pyocyanin production and protease activity of Pseudomonas aeruginosa by 80.6 and 78.5%, respectively. Besides, in this series, some compounds exerted moderate biofilm inhibition activity. To sum up, all the findings indicate that aryl-substituted pyrrolidone derivatives are worth further investigation as quorum sensing inhibitors.


Assuntos
Desenho de Fármacos , Pirrolidinonas/farmacologia , Percepção de Quorum/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Estrutura Molecular , Peptídeo Hidrolases/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Piocianina/antagonistas & inibidores , Piocianina/biossíntese , Pirrolidinonas/síntese química , Pirrolidinonas/química , Relação Estrutura-Atividade
2.
Mar Drugs ; 18(7)2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605132

RESUMO

Global natural products social (GNPS) molecular networking is a useful tool to categorize chemical space within samples and streamline the discovery of new natural products. Here, we demonstrate its use in chemically profiling the extract of the marine tunicate Synoicum kuranui, comprised of many previously reported rubrolides, for new chemical entities. Within the rubrolide cluster, two masses that did not correspond to previously reported congeners were detected, and, following MS-guided fractionation, led to the isolation of new methylated rubrolides T (3) and (Z/E)-U (4). Both compounds showed strong growth inhibitory activity against the Gram-positive bacteria Bacillus subtilis, with minimum inhibitory concentration (MIC) values of 0.41 and 0.91 µM, respectively.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Furanos/farmacologia , Urocordados/química , Animais , Bacillus subtilis/efeitos dos fármacos , Furanos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nova Zelândia
3.
Eur J Oral Sci ; 126(3): 214-221, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29517121

RESUMO

This study evaluated the inhibitory effects of lactams on Streptococcus mutans, Enterococcus faecalis, and Candida glabrata multispecies biofilm formation. γ-Alkylidene-γ-lactams 1, 2, and 3 [solubilized in 3.5% dimethyl sulfoxide (DMSO)] were tested. Glass coverslips were conditioned with either the lactams or 3.5% DMSO (control) for 1 h, inoculated with microbial cultures, and incubated for 48 h. To assess the effect of the lactams on biofilm formation, the following parameters were determined: the biofilm biomass (by both crystal violet staining and protein determination); the amount of insoluble polysaccharides of the extracellular matrix; and the number of viable and total cells [by both colony-forming unit counting and quantitative real-time PCR (qPCR)]. Data were analysed using one-way anova and post-hoc Tukey tests. Lactams 1, 2, and 3 promoted a statistically significant reduction in the amount of biofilm biomass, but only lactam 3 resulted in a statistically significant reduction in the number of attached viable E. faecalis. Both total protein content and the amount of extracellular polysaccharides decreased significantly. The effects of γ-alkylidene-γ-lactams 1, 2, and 3 on the inhibition of multispecies biofilm formation were evident by their ability to reduce the amount of protein and extracellular polysaccharides.


Assuntos
Biofilmes/efeitos dos fármacos , Lactamas/farmacologia , Biofilmes/crescimento & desenvolvimento , Candida glabrata/efeitos dos fármacos , Candida glabrata/crescimento & desenvolvimento , Células Cultivadas , Dimetil Sulfóxido/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Fibroblastos/efeitos dos fármacos , Humanos , Lactamas/química , Testes de Sensibilidade Microbiana , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/crescimento & desenvolvimento
4.
Nat Prod Res ; : 1-10, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695089

RESUMO

Rubrolides are natural butyrolactones isolated from the tunicate Ritterella rubra, shows antibacterial, antiviral and plant photosynthesis inhibitory activities. In this study, a facile total synthetic method for preparing the rubrolides from benzaldehyde by a Darzens reaction, aldol reaction and vinylogous aldol condensation in five steps is presented. Three natural rubrolides (E, C and F) were synthesised in the total yields of 25-40%. The bioassay results indicate that rubrolides E, C and F exhibit some herbicidal inhibitory effect against rapeseed, in particular, rubrolide F shows the best herbicidal activities against rapeseed root with the growth inhibitory rate of 72.8%. At greenhouse treatment concentrations of 100 and 500 mg/L, rubrolide F show a positive dose-toxicity correlation towards abutilon plants. Collectively, facile total Synthesis strategy provided the base for further bioactivities study of rubrolides family. Rubrolide F may be act as inhibitor of photosynthesis, and this could be lead structure of new herbicide.

5.
J Biomed Mater Res A ; 104(12): 3015-3020, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27458927

RESUMO

Poly-ether-ether-ketone (PEEK) is currently introduced as an alternative material for orthopedic implants due to its biocompatibility and low elastic modulus compared to titanium. Also, a sulphonation treatment can functionalize PEEK to embed therapeutical substances. The objective of this work was to functionalize a PEEK film to incorporate novel lactam-based antibiofilms compounds. PEEK samples were functionalized by sulphuric acid treatment and then dissolved in dimethylsulfoxide, where lactams were added to be incorporated into the polymer. A dip-coating technique was used to synthesize a thin film on a glass-based substrate. The degree of sulfonation (DS) and the incorporation of lactams into sulphonated PEEK (sPEEK) were analyzed by Fourier transform infrared spectroscopy, nuclear magnetic resonance, thermogravimetric analysis (TGA), and scanning electron microscopy. A DS of 65% was obtained and TGA curves confirmed the presence of SO3 H and lactams in the sPEEK structure. The growth of Streptococcus mutans biofilm decreased on sPEEK surface containing lactams when compared to sPEEK free of lactams. That indicated the antibiofilm activity of those compounds was maintained after incorporation into sPEEK. Planktonic growth analysis showed no long distant effects of sPEEK containing lactams, indicating that no systemic effects should be expected upon clinical uses of medical devices produced with lactam-treated sPEEK. Results revealed that inclusion of lactams into sPEEK represents a good alternative for the production of biomaterials resistant to bacterial accumulation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3015-3020, 2016.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Biofilmes/efeitos dos fármacos , Cetonas/farmacologia , Lactamas/farmacologia , Polietilenoglicóis/farmacologia , Streptococcus mutans/efeitos dos fármacos , Antibacterianos/química , Benzofenonas , Materiais Biocompatíveis/química , Humanos , Cetonas/química , Lactamas/química , Polietilenoglicóis/química , Polímeros , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus mutans/fisiologia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA