Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 199(16)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28559300

RESUMO

A handful of nucleoid-associated proteins (NAPs) regulate the vast majority of genes in a bacterial cell. H-NS, the histone-like nucleoid-structuring protein, is one of these NAPs and protects Escherichia coli from foreign gene expression. Though lacking any sequence similarity with E. coli H-NS, Rv3852 was annotated as the H-NS ortholog in Mycobacterium tuberculosis, as it resembles human histone H1. The role of Rv3852 was thoroughly investigated by immunoblotting, subcellular localization, construction of an unmarked rv3852 deletion in the M. tuberculosis genome, and subsequent analysis of the resulting Δrv3852 strain. We found that Rv3852 was predominantly present in the logarithmic growth phase with a decrease in protein abundance in stationary phase. Furthermore, it was strongly associated with the cell membrane and not detected in the cytosolic fraction, nor was it secreted. The Δrv3852 strain displayed no growth defect or morphological abnormalities. Quantitative measurement of nucleoid localization in the Δrv3852 mutant strain compared to that in the parental H37Rv strain showed no difference in nucleoid position or spread. Infection of macrophages as well as severe combined immunodeficient (SCID) mice demonstrated that loss of Rv3852 had no detected influence on the virulence of M. tuberculosis We thus conclude that M. tuberculosis Rv3852 is not involved in pathogenesis and is not a typical NAP. The existence of an as yet undiscovered Rv3852 ortholog cannot be excluded, although this role is likely played by the well-characterized Lsr2 protein.IMPORTANCEMycobacterium tuberculosis is the causative agent of the lung infection tuberculosis, claiming more than 1.5 million lives each year. To understand the mechanisms of latent infection, where M. tuberculosis can stay dormant inside the human host, we require deeper knowledge of the basic biology and of the regulatory networks. In our work, we show that Rv3852, previously annotated as H-NS, is not a typical nucleoid-associated protein (NAP) as expected from its initial annotation. Rv3852 from M. tuberculosis has neither influence on nucleoid shape or compaction nor a role in virulence. Our findings reduce the repertoire of identified nucleoid-associated proteins in M. tuberculosis to four transcription regulators and underline the importance of genetic studies to assign a function to bacterial genes.


Assuntos
Proteínas de Bactérias/análise , Proteínas de Ligação a DNA/análise , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/genética , Fatores de Virulência/biossíntese , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Membrana Celular/química , Citosol/química , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Deleção de Genes , Perfilação da Expressão Gênica , Humanos , Macrófagos/microbiologia , Camundongos SCID , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tuberculose/microbiologia , Tuberculose/patologia , Virulência
2.
Cells ; 10(6)2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203111

RESUMO

Rv3852 is a unique nucleoid-associated protein (NAP) found exclusively in Mycobacterium tuberculosis (Mtb) and closely related species. Although annotated as H-NS, we showed previously that it is very different from H-NS in its properties and is distinct from other NAPs, anchoring to cell membrane by virtue of possessing a C-terminal transmembrane helix. Here, we investigated the role of Rv3852 in Mtb in organizing architecture or synthesis machinery of cell wall by protein-protein interaction approach. We demonstrated a direct physical interaction of Rv3852 with Wag31, an important cell shape and cell wall integrity determinant essential in Mtb. Wag31 localizes to the cell poles and possibly acts as a scaffold for cell wall synthesis proteins, resulting in polar cell growth in Mtb. Ectopic expression of Rv3852 in M. smegmatis resulted in its interaction with Wag31 orthologue DivIVAMsm. Binding of the NAP to Wag31 appears to be necessary for fine-tuning Wag31 localization to the cell poles, enabling complex cell wall synthesis in Mtb. In Rv3852 knockout background, Wag31 is mislocalized resulting in disturbed nascent peptidoglycan synthesis, suggesting that the NAP acts as a driver for localization of Wag31 to the cell poles. While this novel association between these two proteins presents one of the mechanisms to structure the elaborate multi-layered cell envelope of Mtb, it also exemplifies a new function for a NAP in mycobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/metabolismo , Peptidoglicano/biossíntese , Proteínas de Bactérias/genética , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Peptidoglicano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA