RESUMO
The effect of salt damage on plants is mainly caused by the toxic effect of Na+. Studies showed that the secretory carrier membrane proteins were associated with the Na+ transport. However, the salt tolerance mechanism of secretory carrier protein (SCAMP) in soybean was yet to be defined. In this study, ten potential SCAMP genes distributed in seven soybean chromosomes were identified in the soybean genome. The phylogenetic tree of SCAMP domain sequences of several plants can divide SCAMPs into two groups. Most GmSCAMPs genes contained multiple Box4, MYB and MYC cis-elements indicated they may respond to abiotic stresses. We found that GmSCAMP1, GmSCAMP2 and GmSCAMP4 expressed in several tissues and GmSCAMP5 was significantly induced by salt stress. GmSCAMP5 showed the same expression patterns under NaCl treatment in salt-tolerant and salt-sensitive soybean varieties, but the induced time of GmSCAMP5 in salt-tolerant variety was earlier than that of salt-sensitive variety. To further study the effect of GmSCAMP5 on the salt tolerance of soybean plants, compared to GmSCAMP5-RNAi and EV-Control plants, GmSCAMP5-OE had less wilted leave and higher SPAD value. Compared to empty vector control, less trypan blue staining was observed in GmSCAMP5-OE leaves while more staining in GmSCAMP5-RNAi leaves. The Na+ of GmSCAMP5-RNAi plants leaves under NaCl stress were significantly higher than that in EV-Control plants, while significantly lower Na+ in GmSCAMP5-OE plants than in that EV-Control plants. The contents of leaves K+ of GmSCAMP5-RNAi, EV-Control, and GmSCAMP5-OE plants under NaCl stress were opposite to that of leaves Na+ content. Finally, salt stress-related genes NHX1, CLC1, TIP1, SOD1, and SOS1 in transformed hairy root changed significantly compared with the empty control. The research will provide novel information for study the molecular regulation mechanism of soybean salt tolerance.
Assuntos
Glycine max , Tolerância ao Sal , Tolerância ao Sal/genética , Glycine max/genética , Filogenia , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Transporte/genética , Regulação da Expressão Gênica de PlantasRESUMO
The development of salt-tolerant tomato genotypes is a basic requirement to overcome the challenges of tomato production under salinity in the field or soil-free farming. Two groups of eight tomato introgression lines (ILs) each, were evaluated for salinity tolerance. Group-I and the group-II resulted from the following crosses respectively: Solanum lycopersicum cv-6203 × Solanum habrochaites and Solanum lycopersicum M82 × Solanum pennellii. Salt tolerance level was assessed based on a germination percentage under NaCl (0, 75, 100 mM) and in the vegetative stage using a hydroponic growing system (0, 120 mM NaCl). One line from group I (TA1648) and three lines from group II (IL2-1, IL2-3, and IL8-3) were shown to be salt-tolerant since their germination percentages were significantly higher at 75 and 100 mM NaCl than that of their respective cultivated parents cvE6203 and cvM82. Using the hydroponic system, IL TA1648 and IL 2-3 showed the highest value of plant growth traits and chlorophyll concentration. The expression level of eight salt-responsive genes in the leaves and roots of salt-tolerant ILs (TA1648 and IL 2-3) was estimated. Interestingly, SlSOS1, SlNHX2, SlNHX4, and SlERF4 genes were upregulated in leaves of both TA1648 and IL 2-3 genotypes under NaCl stress. While SlHKT1.1, SlNHX2, SlNHX4, and SlERF4 genes were upregulated under salt stress in the roots of both TA1648 and IL 2-3 genotypes. Furthermore, SlSOS2 and SlSOS3 genes were upregulated in TA1648 root and downregulated in IL 2-3. On the contrary, SlSOS1 and SlHKT1.2 genes were upregulated in the IL 2-3 root and downregulated in the TA1648 root. Monitoring of ILs revealed that some of them have inherited salt tolerance from S. habrochaites and S. pennellii genetic background. These ILs can be used in tomato breeding programs to develop salt-tolerant tomatoes or as rootstocks in grafting techniques under saline irrigation conditions.
RESUMO
Aspergillus, as a genus of filamentous fungi, has members that display a variety of different behavioural strategies, which are affected by various environmental factors. The decoded genomic sequences of many species vary greatly in their evolutionary similarities, encouraging studies on the functions and evolution of the Aspergillus genome in complex natural environments. Here, we present the 26 Mb de novo assembled high-quality reference genome of Aspergillus glaucus 'China Changchun halophilic Aspergillus' (CCHA), which was isolated from the surface of plants growing near a salt mine in Jilin, China, based on data from whole-genome shotgun sequencing using Illumina Solexa technology. The sequence, coupled with data from comprehensive transcriptomic survey analyses, indicated that the redox state and transmembrane transport might be critical molecular mechanisms for the adaptation of A. glaucus 'CCHA' to the high-salt environment of the saltern. The isolation of salt tolerance-related genes, such as CCHA-2114, and their overexpression in Escherichia coli demonstrated that A. glucus 'CCHA' is an excellent organism for the isolation and identification of salt tolerant-related genes. These data expand our understanding of the evolution and functions of fungal and microbial genomes, and offer multiple target genes for crop salt-tolerance improvement through genetic engineering.