Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunol Rev ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39340232

RESUMO

Enteric viruses are the main cause of acute gastroenteritis worldwide with a significant morbidity and mortality, especially among children and aged adults. Some enteric viruses also cause disseminated infections and severe neurological manifestations such as poliomyelitis. Protective immunity against these viruses is not well understood in humans, with most knowledge coming from animal models, although the development of poliovirus and rotavirus vaccines has extended our knowledge. In a classical view, innate immunity involves the recognition of foreign DNA or RNA by pathogen recognition receptors leading to the production of interferons and other inflammatory cytokines. Antigen uptake and presentation to T cells and B cells then activate adaptive immunity and, in the case of the mucosal immunity, induce the secretion of dimeric IgA, the more potent immunoglobulins in viral neutralization. The study of Inborn errors of immunity (IEIs) offers a natural opportunity to study nonredundant immunity toward pathogens. In the case of enteric viruses, patients with a defective production of antibodies are at risk of developing neurological complications. Moreover, a recent description of patients with low or absent antibody production with protracted enteric viral infections associated with hepatitis reinforces the prominent role of B cells and immunoglobulins in the control of enteric virus.

2.
J Virol ; 98(9): e0063924, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39132992

RESUMO

There are four genogroups and 18 genotypes of human sapoviruses (HuSaVs) responsible for acute gastroenteritis. To comprehend their antigenic and virological differences, it is crucial to obtain viral stocks of the different strains. Previously, we utilized the human duodenum-derived cell line HuTu80, and glycocholate, a conjugated bile acid, to replicate and propagate GI.1, GI.2, and GII.3 HuSaVs (H. Takagi et al., Proc Natl Acad Sci U S A 117:32078-32085, 2020, https://10.1073/pnas.2007310117). First, we investigated the impact of HuTu80 passage number on HuSaV propagation. Second, we demonstrated that taurocholate improved the initial replication success rate and viral RNA levels in fecal specimens relative to glycocholate. By propagating 15 HuSaV genotypes (GI.1-7, GII.1-5, -8, and GV.1-2) and accomplishing preparation of viral stocks containing 1.0 × 109 to 3.4 × 1011 viral genomic copies/mL, we found that all strains required bile acids for replication, with GII.4 showing strict requirements for taurocholate. The deduced VP1 sequences of the viruses during the scale-up of serial passaged virus cultures were either identical or differed by only two amino acids from the original sequences in feces. In addition, we purified virions from nine strains of different genotypes and used them as immunogens for antiserum production. Enzyme-linked immunosorbent assays (ELISAs) using rabbit and guinea pig antisera for each of the 15 strains of different genotypes revealed distinct antigenicity among the propagating viruses across genogroups and differences between genotypes. Acquisition of biobanked viral resources and determination of key culture conditions will be valuable to gain insights into the common mechanisms of HuSaV infection. IMPORTANCE: The control of human sapovirus, which causes acute gastroenteritis in individuals of all ages, is challenging because of its association with outbreaks similar to those caused by human norovirus. The establishment of conditions for efficient viral propagation of various viral strains is essential for understanding the infection mechanism and identifying potential control methods. In this study, two critical factors for human sapovirus propagation in a conventional human duodenal cell line were identified, and 15 strains of different genotypes that differed at the genetic and antigenic levels were isolated and used to prepare virus stocks. The preparation of virus stocks has not been successful for noroviruses, which belong to the same family as sapoviruses. Securing virus stocks of multiple human sapovirus strains represents a significant advance toward establishing a reliable experimental system that does not depend on limited virus-positive fecal material.


Assuntos
Infecções por Caliciviridae , Duodeno , Genótipo , Sapovirus , Replicação Viral , Sapovirus/genética , Humanos , Duodeno/virologia , Duodeno/imunologia , Linhagem Celular , Animais , Infecções por Caliciviridae/virologia , Infecções por Caliciviridae/imunologia , Gastroenterite/virologia , Antígenos Virais/imunologia , Antígenos Virais/genética , Fezes/virologia , Coelhos , Cobaias , Variação Genética , RNA Viral/genética , Cultura de Vírus , Ácidos e Sais Biliares
3.
J Infect Dis ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042731

RESUMO

BACKGROUND: Sapovirus is an important cause of acute gastroenteritis in childhood. While vaccines against sapovirus may reduce gastroenteritis burden, a major challenge to their development is a lack of information about natural immunity. METHODS: We measured sapovirus-specific IgG in serum collected, between 2017 and 2020, of mothers soon after delivery and at 6 time points in Nicaraguan children until 3 years of age (n=112 dyads) using virus-like particles representing three sapovirus genotypes (GI.1, GI.2, GV.1). RESULTS: Sixteen (14.3%) of the 112 children experienced at least one sapovirus gastroenteritis episode, of which GI.1 was the most common genotype. Seroconversion to GI.1 and GI.2 was most common between 5 and 12 months of age, while seroconversion to GV.1 peaked at 18 to 24 months of age. All children who experienced sapovirus GI.1 gastroenteritis seroconverted and developed genotype-specific IgG. The impact of sapovirus exposure on population immunity was determined using antigenic cartography: newborns share their mothers' broadly binding IgG responses, which declined at 5 months of age and then increased as infants experienced natural sapovirus infections. CONCLUSION: By tracking humoral immunity to sapovirus over the first 3 years of life, this study provides important insights for the design and timing of future pediatric sapovirus vaccines.

4.
J Infect Dis ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718103

RESUMO

BACKGROUND: Most U.S. acute gastroenteritis (AGE) episodes in children are attributed to norovirus, whereas very little information is available on adenovirus 40/41 (AdV40/41), astrovirus or sapovirus. The New Vaccine Surveillance Network (NVSN) conducted prospective, active, population-based AGE surveillance in young children. METHODS: We tested and typed stool specimens collected between December 2011 to June 2016 from one NVSN site in Kansas City for the three viruses, and calculated hospitalization and emergency department (ED) detection rate. RESULTS: Of 3,205 collected specimens, 2,453 (76.5%) were from AGE patients (339 inpatients and 2,114 ED patients) and 752 (23.5%) were from healthy controls (HC). In AGE patients, astrovirus was detected in 94 (3.8%), sapovirus in 252 (10.3%) and AdV40/41 in 101 (4.5%) of 2249 patients. In HC, astrovirus was detected in 13 (1.7%) and sapovirus in 15 (2.0%) specimens. Astrovirus type 1 (37.7%) and genogroup I sapoviruses (59.3%) were most prevalent.Hospitalization rates were 5 (AdV40/41), 4 (astrovirus) and 8 (sapovirus) per 100,000 children <11 years old, whereas ED rates were 2.4 (AdV40/41), 1.9 (astrovirus) and 5.3 (sapovirus) per 1000 children <5 years old. CONCLUSIONS: Overall, AdV40/41, astrovirus, and sapovirus were detected in 18.6% of AGE in a large pediatric hospital in Kansas City.

5.
Biochem Biophys Res Commun ; 710: 149878, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38608492

RESUMO

Sapovirus (SaV) is a nonenveloped RNA virus that causes acute gastroenteritis in humans. Although SaV is a clinically important pathogen in children, an effective vaccine is currently unavailable. The capsid protein VP1 of SaVs forms the outer shell of the virion and is highly diverse, as often seen in the virion-surface proteins of RNA viruses, creating an obstacle for vaccine development. We here report a unique phenomenon pertaining to the variation of SaV VP1. Phylogenetic and information entropy analyses using full-length VP1 sequences from a public database consistently showed that the amino acid sequences of the VP1 protein have been highly conserved over more than 40 years in the major epidemic genotype GI.1 but not in GI.2. Structural modeling showed that even the VP1 P2 subdomain, which is arranged on the outermost shell of the virion and presumably exposed to anti-SaV antibodies, remained highly homogeneous in GI.1 but not in GI.2. These results suggest strong evolutionary constraints against amino acid changes in the P2 subdomain of the SaV GI.1 capsid and illustrate a hitherto unappreciated mechanism, i.e., preservation of the VP1 P2 subdomain, involved in SaV survival. Our findings could have important implications for the development of an anti-SaV vaccine.


Assuntos
Sapovirus , Vacinas , Criança , Humanos , Sapovirus/genética , Proteínas do Capsídeo/genética , Filogenia , Aminoácidos/genética , Genótipo , Fezes
6.
J Virol ; 97(4): e0038323, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37039654

RESUMO

Human sapoviruses (HuSaVs), like human noroviruses (HuNoV), belong to the Caliciviridae family and cause acute gastroenteritis in humans. Since their discovery in 1976, numerous attempts to grow HuSaVs in vitro were unsuccessful until 2020, when these viruses were reported to replicate in a duodenal cancer cell-derived line. Physiological cellular models allowing viral replication are essential to investigate HuSaV biology and replication mechanisms such as genetic susceptibility, restriction factors, and immune responses to infection. In this study, we demonstrate replication of two HuSaV strains in human intestinal enteroids (HIEs) known to support the replication of HuNoV and other human enteric viruses. HuSaVs replicated in differentiated HIEs originating from jejunum, duodenum and ileum, but not from the colon, and bile acids were required. Between 2h and 3 to 6 days postinfection, viral RNA levels increased up from 0.5 to 1.8 log10-fold. Importantly, HuSaVs were able to replicate in HIEs independent of their secretor status and histo-blood group antigen expression. The HIE model supports HuSaV replication and allows a better understanding of host-pathogen mechanisms such as cellular tropism and mechanisms of viral replication. IMPORTANCE Human sapoviruses (HuSaVs) are a frequent but overlooked cause of acute gastroenteritis, especially in children. Little is known about this pathogen, whose successful in vitro cultivation was reported only recently, in a cancer cell-derived line. Here, we assessed the replication of HuSaV in human intestinal enteroids (HIEs), which are nontransformed cultures originally derived from human intestinal stem cells that can be grown in vitro and are known to allow the replication of other enteric viruses. Successful infection of HIEs with two strains belonging to different genotypes of the virus allowed discovery that the tropism of these HuSaVs is restricted to the small intestine, does not occur in the colon, and replication requires bile acid but is independent of the expression of histo-blood group antigens. Thus, HIEs represent a physiologically relevant model to further investigate HuSaV biology and a suitable platform for the future development of vaccines and antivirals.


Assuntos
Infecções por Caliciviridae , Técnicas de Cultura , Sapovirus , Replicação Viral , Humanos , Ácidos e Sais Biliares/farmacologia , Infecções por Caliciviridae/virologia , Gastroenterite/virologia , Intestino Delgado/virologia , Sapovirus/crescimento & desenvolvimento , Sapovirus/imunologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia , Técnicas de Cultura/métodos , Interações entre Hospedeiro e Microrganismos , Meios de Cultura/química , Linhagem Celular Tumoral , Diferenciação Celular
7.
Appl Environ Microbiol ; : e0115824, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39387558

RESUMO

The aim of this study was to evaluate whether community-level monitoring of respiratory and enteric viruses in wastewater can provide a comprehensive picture of local virus circulation. Wastewater samples were collected weekly at the wastewater treatment plant (WWTP) inlet and at the outlet of a nearby nursing home (NH) in Burgundy, France, during the winter period of 2022/2023. We searched for the pepper mild mottle virus as an indicator of fecal content as well as for the main respiratory viruses [severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza, and respiratory syncytial virus] and enteric viruses (rotavirus, sapovirus, norovirus, astrovirus, and adenovirus). Samples were analyzed using real-time reverse transcription PCR-based methods. SARS-CoV-2 was the most frequently detected respiratory virus, with 66.7% of positive samples from the WWTP and 28.6% from the NH. Peaks of SARS-CoV-2 were consistent with the chronological incidence of infections recorded in the sentinel surveillance and the nearby hospital databases. The number of positive samples was lower in the NH than in WWTP for the three respiratory viruses. Enteric viruses were frequently detected, most often sapovirus and norovirus genogroup II, accounting both for 77.8% of positive samples in the WWTP and 57.1% and 37%, respectively, in the NH. The large circulation of sapovirus was unexpected in particular in the NH. Combined wastewater surveillance using simple optimized methods can be a valuable tool for monitoring viral circulation and may serve as a suitable early warning system for identifying both local outbreaks and the onset of epidemics. These results encourage the application of wastewater-based surveillance (WBS) to SARS-CoV2, norovirus, and sapovirus.IMPORTANCEWBS provides valuable information on the spread of epidemic viruses in the environment using appropriate and sensitive detection methods. By monitoring the circulation of viruses using reverse transcription PCR methods in wastewater from the inlet of a wastewater treatment plant and the outlet of a nearby retirement home (connected to the same collective sewer network), we aimed to demonstrate that implementing combined WBS at key community sites allows effective detection of the occurrence of respiratory (influenza, respiratory syncytial virus, and SARS-CoV-2) and enteric (norovirus, rotavirus, and sapovirus) virus infections within a given population. This analysis on a localized scale provided new information on the viral circulation in the two different sites. Implementing WBS to monitor the circulation or the emergence of infectious diseases is an important means of alerting the authorities and improving public health management. WBS could participate actively to the health of humans, animals, and the environment.

8.
J Med Virol ; 96(9): e29904, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39264064

RESUMO

Sapovirus (SaV) infection is increasing worldwide. Herein, we provided evidence of a significant increase in SaV infection in Japan during 2010-2022, primarily due to the considerable (p = 0.0003) rise of the GI.1 genotype. Furthermore, we found that all major and minor SaV outbreaks in Japan, including the largest SaV outbreak in 2021-2022, were caused by the GI.1 genotype. Therefore, to get insight into the underlying molecular mechanism behind this rising trend of the SaV GI.1 type, we selected 15 SaV GI.1 outbreak strains for complete genome analysis through next-generation sequencing. Phylogenetically, our strains remained clustered in different branches in lineages I and II among the GI.1 genotype. We showed all amino acid (aa) substitutions in different open reading frames (ORFs) in these strains. Importantly, we have demonstrated that the strains involved in the largest SaV outbreak in Japan in 2021-2022 belonged to lineage II and possessed the third ORF. We have identified some unique aa mutations in these major outbreak strains in the NS1 and NS6-NS7 regions that are thought to be associated with viral pathogenicity, cell tropism, and epidemiological competence. Thus, in addition to enriching the database of SaV's complete sequences, this study provides insights into its important mutations.


Assuntos
Infecções por Caliciviridae , Surtos de Doenças , Evolução Molecular , Genoma Viral , Genótipo , Fases de Leitura Aberta , Filogenia , Sapovirus , Sapovirus/genética , Sapovirus/classificação , Sapovirus/isolamento & purificação , Humanos , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , Japão/epidemiologia , Genoma Viral/genética , Fases de Leitura Aberta/genética , Gastroenterite/virologia , Gastroenterite/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala , Substituição de Aminoácidos , Epidemiologia Molecular , Sequenciamento Completo do Genoma , Mutação
9.
Eur J Clin Microbiol Infect Dis ; 43(1): 55-59, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37924444

RESUMO

Human sapovirus (HuSaV) is a common cause of gastroenteritis worldwide and is responsible for approximately 4% of acute gastroenteritis episodes in Europe. As reported with norovirus, patients with immunocompromised states are at increased risk of developing HuSaV infection, which can lead to persistent diarrhea and chronic viral shedding in some individuals. Chronic infections are incompletely investigated in these patients, and, due to the lack of specific treatment for HuSaV infection, different clinical approaches were carried out in order to provide further evidence on clinical evolution of these patients with different treatments. In this retrospective study, we report five immunocompromised pediatric patients with recurrent diarrhea caused by HuSaV and long-term viral shedding. Stool samples were analyzed by real-time PCR and tested for enteropathogenic viruses and bacteria and protozoa. Among transplant recipients, reduction of immunosuppressant therapy led to clinical improvement and relief of symptoms, maintaining a balance between managing the infection and preventing graft rejection. Nitazoxanide for 14 days was only used in one of these patients, showing to be an effective therapy to achieve reduction in time to resolution of symptoms. Neither nitazoxanide nor modification of immunosuppressant therapy could avoid recurrences. Further investigations are needed to develop new approaches that can both clear the infection and avoid persistent diarrhea in these patients.


Assuntos
Infecções por Adenovirus Humanos , Infecções por Caliciviridae , Infecções por Enterovirus , Gastroenterite , Sapovirus , Humanos , Criança , Lactente , Sapovirus/genética , Estudos Retrospectivos , Infecções por Caliciviridae/diagnóstico , Gastroenterite/diagnóstico , Diarreia/diagnóstico , Imunossupressores , Fezes
10.
Eur J Clin Microbiol Infect Dis ; 43(3): 525-531, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216845

RESUMO

BACKGROUND: Multiplex syndromic gastrointestinal panels (GIPCR) have streamlined the diagnosis of infectious diarrhea. Additionally, they have expanded the number of pathogens that can be routinely evaluated, allowing further understanding of the prevalence of enteric pathogens in various patient populations. The goal of this study was to investigate the prevalence and clinical presentation of astrovirus and sapovirus gastroenteritis in adult oncology patients as detected by the FilmArray GIPCR. METHODS: All GIPCR panel results from December 2017 to June 2021 were retrospectively reviewed to determine the prevalence of astrovirus and sapovirus in adult oncology patients. Medical records were also reviewed to obtain clinical information. Repeat GIPCR positivity and symptom duration were used to estimate prolonged viral shedding. RESULTS: A total of 18,014 panels were performed on samples collected from 9303 adults. Overall, astrovirus and sapovirus were detected in 0.35% (33/9303) and 0.45% (42/9303) GIPCRs respectively. At least one viral target was detected in 424 (4.4%) patients. Astrovirus accounted for 7.8% (33/424) and sapovirus 9.9% (42/424) of patients. Diarrhea was the most common symptom documented. A subset of transplant patients had protracted viral detection with a median of ~27 days (range 23-43 days) for astrovirus and 97 days (range 11-495) for sapovirus. No clusters or outbreaks were identified during the study period. CONCLUSION: In oncology patients with viral gastroenteritis, astrovirus and sapovirus were the causative agents in 18% of the cases. Both viruses were associated with mild disease. Prolonged diarrhea and viral shedding were observed in a few transplant patients.


Assuntos
Gastroenterite , Neoplasias , Norovirus , Sapovirus , Adulto , Humanos , Lactente , Sapovirus/genética , Prevalência , Estudos Retrospectivos , Norovirus/genética , Gastroenterite/diagnóstico , Diarreia/epidemiologia , Neoplasias/complicações , Fezes , Reação em Cadeia da Polimerase
11.
Infection ; 52(5): 1831-1838, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38592660

RESUMO

PURPOSE: Diarrhea is an important cause of morbidity and mortality in immunocompromised patients. After including sapovirus to the viral gastroenteritis screening of our institution's laboratory, we noticed an increase in sapovirus infections among kidney transplant recipients. Therefore, we assumed former gastrointestinal tract infections with unidentified pathogens could have been caused by sapovirus. To better understand the characteristics of a sapovirus infection in a high-risk group we initiated this study. METHODS: Over a period of 6 months, all transplant recipients with diarrhea and later identified viral/unknown pathogens were included. Kidney function, levels of immunosuppressants and  c-reactive protein, acid-base balance, onset of symptoms and time of hospitalization were analyzed. RESULTS: Among 13 hospitalized kidney transplant recipients sapovirus was detected in four patients, while in the remaining nine, three were diagnosed with norovirus, one with cytomegalovirus, one with inflammatory bowel disease and in four patients no pathogen was identified. Even though statistically not significant, creatinine levels at admission tended to be higher in sapovirus patients (median: sapovirus: 3.3 mg/dl (1.3; 5.0), non-sapovirus: 2.5 mg/dl (1.1; 4.9), p = 0.710). Also, Tacrolimus levels showed the same trend (sapovirus: 13.6 ng/ml (12.9; 13.6), non-sapovirus: 7.1 ng/ml (2.6; 22.6), p = 0.279). On discharge creatinine levels improved equally in both groups (sapovirus: 1.7 mg/dl (1.4; 3.2), non-sapovirus: 2 mg/dl (1.0; 3.6), p = 0.825). CONCLUSION: In high-risk patients, early symptomatic treatment remains crucial to protect the transplant`s function. In our cohort all patients recovered well. Larger cohorts and longer follow-up times are needed to detect the long-term consequences and a potential need for further research regarding specific treatment. TRIAL REGISTRATION: The study has been registered on DRKS (trialsearch.who.int), Reg. Nr. DRKS00033311 (December 28th 2023).


Assuntos
Infecções por Caliciviridae , Transplante de Rim , Sapovirus , Transplantados , Humanos , Sapovirus/isolamento & purificação , Transplante de Rim/efeitos adversos , Masculino , Pessoa de Meia-Idade , Feminino , Infecções por Caliciviridae/virologia , Transplantados/estatística & dados numéricos , Idoso , Adulto , Diarreia/virologia , Hospedeiro Imunocomprometido , Imunossupressores/uso terapêutico , Doenças Transmissíveis Emergentes/virologia
12.
Int J Environ Health Res ; 34(4): 1995-2014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37086061

RESUMO

In this study, the detection rates of four enteric viruses, Human Astrovirus (HAstVs), Aichivirus (AiVs), Human Adenovirus (HAdVs), and Sapovirus (SaVs) are carried out to assess the virological quality of the treated wastewater. A total of 140 samples was collected from wastewater treatment plant WWTP of Tunis-City. Real-time RT-PCR and conventional RT-PCR results showed high frequencies of detection of the four enteric viruses investigated at the entry and exit of the biological activated sludge procedure and a significant reduction in viral titers after tertiary treatment with UV-C254 irradiation. These results revealed the ineffectiveness of the biological activated sludge treatment in removing viruses and the poor quality of the treated wastewater intended for recycling, agricultural reuse, and safe discharge into the natural environment. The UV-C254 irradiation, selected while considering the non-release of known disinfection by-products because of eventual reactions with the large organic and mineral load commonly present in the wastewater.


Assuntos
Enterovirus , Sapovirus , Vírus , Humanos , Esgotos , Sapovirus/genética , Adenoviridae , Águas Residuárias
13.
Clin Infect Dis ; 76(6): 1043-1049, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36310530

RESUMO

BACKGROUND: Sapovirus is an important cause of acute gastroenteritis (AGE) in young children. However, knowledge gaps remain in community settings. We investigated the epidemiology, disease characteristics, and healthcare use associated with sapovirus infections in Australian children during their first 2 years of life. METHODS: Children in the Brisbane-based Observational Research in Childhood Infectious Diseases birth cohort provided daily gastrointestinal symptoms (vomiting/loose stools), weekly stool swabs, and healthcare data until age 2 years. Swabs were batch-tested for sapovirus using real-time polymerase chain reaction assays. Incidence rates and estimates of associations were calculated. RESULTS: Overall, 158 children returned 11 124 swabs. There were 192 sapovirus infection episodes. The incidence rate in the first 2 years of life was 0.89 infections per child-year (95% confidence interval [CI], .76-1.05), and the symptomatic incidence rate was 0.26 episodes per child-year (95% CI, .17-.37). Age ≥6 months, the fall season, and childcare attendance increased disease incidence significantly. Fifty-four of the 180 (30%) infections with linked symptom diaries were symptomatic, with 72% recording vomiting and 48% diarrhea. Prior infection reduced risk of further infections (adjusted hazard ratio, 0.70 [95% CI, .54-.81]) in the study period. Viral loads were higher and viral shedding duration was longer in symptomatic than asymptomatic children. Twenty-three (43%) symptomatic episodes required healthcare, including 6 emergency department presentations and 2 hospitalizations. CONCLUSIONS: Sapovirus infections are common in Australian children aged 6-23 months. Efforts to reduce childhood AGE after the global rollout of rotavirus vaccines should include sapovirus where estimates of its incidence in communities will be crucial.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Sapovirus , Humanos , Lactente , Pré-Escolar , Sapovirus/genética , Coorte de Nascimento , Austrália/epidemiologia , Gastroenterite/epidemiologia , Diarreia/epidemiologia , Fezes , Vômito , Infecções por Caliciviridae/epidemiologia
14.
Clin Infect Dis ; 76(76 Suppl1): S123-S131, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37074439

RESUMO

BACKGROUND: While rotavirus causes severe diarrheal disease in children aged <5 years, data on other viral causes in sub-Saharan Africa are limited. METHODS: In the Vaccine Impact on Diarrhea in Africa study (2015-2018), we analyzed stool from children aged 0-59 months with moderate-to-severe diarrhea (MSD) and without diarrhea (controls) in Kenya, Mali, and The Gambia using quantitative polymerase chain reaction. We derived the attributable fraction (AFe) based on the association between MSD and the pathogen, accounting for other pathogens, site, and age. A pathogen was attributable if the AFe was ≥0.5.The severity of attributable MSD was defined by a modified Vesikari score (mVS). Monthly cases were plotted against temperature and rainfall to assess seasonality. RESULTS: Among 4840 MSD cases, proportions attributed to rotavirus, adenovirus 40/41, astrovirus, and sapovirus were 12.6%, 2.7%, 2.9%, and 1.9%, respectively. Attributable rotavirus, adenovirus 40/41, and astrovirus MSD cases occurred at all sites, with mVS of 11, 10, and 7, respectively. MSD cases attributable to sapovirus occurred in Kenya, with mVS of 9. Astrovirus and adenovirus 40/41 peaked during the rainy season in The Gambia, while rotavirus peaked during the dry season in Mali and The Gambia. CONCLUSIONS: In sub-Saharan Africa, rotavirus was the most common cause of MSD; adenovirus 40/41, astrovirus, and sapovirus contributed to a lesser extent among children aged <5 years. Rotavirus- and adenovirus 40/41-attributable MSD were most severe. Seasonality varied by pathogen and location. Efforts to increase the coverage of rotavirus vaccines and to improve prevention and treatment for childhood diarrhea should continue.


Assuntos
Vírus de RNA , Rotavirus , Sapovirus , Vacinas , Criança , Humanos , Lactente , Pré-Escolar , Rotavirus/genética , Prevalência , Diarreia , Adenoviridae/genética , Quênia/epidemiologia , Fezes
15.
J Virol ; 96(9): e0029822, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35435722

RESUMO

Sapovirus (SaV) is a member of the Caliciviridae family, which causes acute gastroenteritis in humans and animals. Human sapoviruses (HuSaVs) are genetically and antigenically diverse, but the lack of a viral replication system and structural information has hampered the development of vaccines and therapeutics. Here, we successfully produced a self-assembled virus-like particle (VLP) from the HuSaV GI.6 VP1 protein, and the first atomic structure was determined using single-particle cryo-electron microscopy (cryo-EM) at a 2.9-Å resolution. The atomic model of the VP1 protein revealed a unique capsid protein conformation in caliciviruses. All N-terminal arms in the A, B, and C subunits interacted with adjacent shell domains after extending through their subunits. The roof of the arched VP1 dimer was formed between the P2 subdomains by the interconnected ß strands and loops, and its buried surface was minimized compared to those of other caliciviruses. Four hypervariable regions that are potentially involved in the antigenic diversity of SaV formed extensive clusters on top of the P domain. Potential receptor binding regions implied by tissue culture mutants of porcine SaV were also located near these hypervariable clusters. Conserved sequence motifs of the VP1 protein, "PPG" and "GWS," may stabilize the inner capsid shell and the outer protruding domain, respectively. These findings will provide the structural basis for the medical treatment of HuSaV infections and facilitate the development of vaccines, antivirals, and diagnostic systems. IMPORTANCE SaV and norovirus, belonging to the Caliciviridae family, are common causes of acute gastroenteritis in humans and animals. SaV and norovirus infections are public health problems in all age groups, which occur explosively and sporadically worldwide. HuSaV is genetically and antigenically diverse and is currently classified into 4 genogroups consisting of 18 genotypes based on the sequence similarity of the VP1 proteins. Despite these detailed genetic analyses, the lack of structural information on viral capsids has become a problem for the development of vaccines or antiviral drugs. The 2.9-Å atomic model of the HuSaV GI.6 VLP presented here not only revealed the location of the amino acid residues involved in immune responses and potential receptor binding sites but also provided essential information for the design of stable constructs needed for the development of vaccines and antivirals.


Assuntos
Proteínas do Capsídeo , Capsídeo , Sapovirus , Animais , Capsídeo/ultraestrutura , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Conformação Proteica , Sapovirus/ultraestrutura , Suínos
16.
J Med Virol ; 95(1): e28321, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36397269

RESUMO

Norovirus (NoV) and sapovirus (SaV) are important pathogens that cause acute gastroenteritis (AGE) in all age groups, commonly in children worldwide. Recently, a number of studies have reported a wide variety of NoV recombinant strains. This study aimed to investigate the distribution of NoV and SaV recombinant strains circulating in Chiang Mai, Thailand, during 2019-2020. One hundred and twenty-four NoV and seven SaV strains detected in children admitted to the hospital with AGE were included in this study. The partial RNA-dependent RNA-polymerase (RdRp)/VP1 regions of these NoV and SaV strains were analyzed by phylogenetic analysis, Simplot, and RDP software. Overall, eight recombination patterns of NoV were detected. NoV GII.4[P16] was the most common strain detected (39.1%), followed by GII.3[P12] (25.0%), GII.4[P31] (17.2%), and other recombinant strains were detected at a lower rate. NoV GII.12[P16] strains were detected for the first time in Thailand. For SaV, none of the recombinant strains was detected. All SaV strains, GI.1/GI.1, GI.2/GI.2, and GII.5/GII.5, exhibited VP1 genotype corresponded to RdRp genotype. In conclusion, this study demonstrates the distribution and diversity of NoV and SaV recombinant strains circulating in pediatric patients with AGE in Chiang Mai, during 2019-2020 with the emergence of NoV GII.3[P12] and GII.12[P16].


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Sapovirus , Criança , Humanos , Norovirus/genética , Tailândia/epidemiologia , Filogenia , Infecções por Caliciviridae/epidemiologia , Gastroenterite/epidemiologia , Sapovirus/genética , Genótipo , RNA Polimerase Dependente de RNA/genética , RNA , Fezes
17.
J Med Virol ; 95(8): e29023, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37543991

RESUMO

An increasing trend of sapovirus (SaV) infections in Japanese children during 2009-2019, particularly after the introduction of the voluntary rotavirus (RV)-vaccination program has been observed. Herein, we investigated the epidemiological situation of SaV infections from 2019 to 2022 when people adopted a precautionary lifestyle due to the emergence of the COVID-19 pandemic, and RV vaccines had been implemented as routine vaccines. Stool samples were collected from children who attended outpatient clinics with acute gastroenteritis and analyzed by reverse transcriptase-polymerase chain reaction to determine viral etiology. Among 961 stool samples, 80 (8.3%) were positive for SaV: 2019-2020 (6.5%), 2020-2021 (0%), and 2021-2022 (12.8%). The trend of SaV infection in Japanese children yet remained upward with statistical significance (p = 0.000). The major genotype was GI.1 (75%) which caused a large outbreak in Kyoto between December 2021 and February 2022. Phylogenetic, gene sequence and deduced amino acid sequence analyses suggested that these GI.1 strains detected in the outbreak and other places during 2021-2022 or 2019-2020 remained genetically identical and widely spread. This study reveals that SaV infection is increasing among Japanese children which is a grave concern and demands immediate attention to be paid before SaV attains a serious public health problem.


Assuntos
COVID-19 , Infecções por Caliciviridae , Sapovirus , Vacinas , Criança , Humanos , Sapovirus/genética , Japão/epidemiologia , Filogenia , Pandemias , Fezes , COVID-19/epidemiologia , Genótipo , Infecções por Caliciviridae/epidemiologia
18.
Virol J ; 20(1): 268, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974193

RESUMO

BACKGROUND: Sapovirus (SaV) infection is increasing globally. Concurrently, several SaV-outbreaks were observed in children of Zhejiang province, China, in recent years, In this study, the genotypes of Sapovirus from seven outbreaks in the Zhejiang province were analysed. METHODS: A total of 105 faecal samples were collected from children aged between 4 and 17 years from the Zhejiang Provincial Center for Disease Control and Prevention between October 2021 and February 2023. Genotypes were processed using reverse transcription polymerase chain reaction and Sanger sequencing, while next-generation sequencing was used to generate a complete viral genome. Deduced amino acid sequences were analysed to detect VP1 gene mutations. RESULTS: In total, 60 SaV-positive patients were detected at a 57.14% (60/105) positivity rate. Positive rates in the seven outbreaks were: 22.22% (2/9), 15.00% (3/20), 93.10% (27/29), 84.21% (16/19), 28.57% (2/7), 53.33% (8/15) and 33.33% (2/6), respectively. Four genotypes were identified in the seven outbreaks, of which, GI.1 accounted for 14.29% (1/7), GI.2 accounted for 14.29% (1/7), GI.6 and GII.5 accounted for 14.29% (1/7), and GI.6 accounted for 57.14% (4/7). All patients were children and outbreaks predominantly occurred in primary schools and during cold seasons. Additionally, the complete sequence from the GI.6 outbreak strain showed high homology (identity: 99.99%) with few common substitutions (Y300S, N302S and L8M) in VP1 protein. CONCLUSIONS: SaV genotype diversity was observed in the seven outbreaks, with GI.6 being the main SaV genotype in Zhejiang province. It demonstrated high homology and may provide a platform for SaV prevention and control measures.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Sapovirus , Criança , Humanos , Pré-Escolar , Adolescente , Sapovirus/genética , Gastroenterite/epidemiologia , Infecções por Caliciviridae/epidemiologia , Filogenia , Genótipo , Surtos de Doenças , Fezes
19.
Rev Med Virol ; 32(3): e2302, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34626019

RESUMO

Sapovirus (SaV) is an emerging cause of children gastrointestinal complications such as acute gastroenteritis (AGE). The aim of the present systematic review and meta-analysis was to estimate the global prevalence of the SaV in children and association of infection with SaVs and AGE in children based on case-control studies. Four international databases (PubMed, Scopus, Web of Sciences and Google Scholar) were used to retrieve English-language studies published between January 2000 and December 2020. Comprehensive Meta-Analysis software was applied to estimate the overall prevalence, publication bias and heterogeneity index. The pooled prevalence of SaV infection among children with gastroenteritis was 3.4% [95% confidence interval (CI): 2.9%-3.9%] based on a random-effects meta-analysis. Genogroup I was the dominant genogroup of SaV in children with gastroenteritis [2.2% (95% CI: 1.6%-3.0%)], association analysis showed that SaV was associated with gastroenteritis [OR: 1.843 (95% CI: 1.27-2.66)]. Given the significant prevalence of the virus in children, it is necessary to pay more attention to this situation. Therefore, preventive health measures in children should be a priority.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Sapovirus , Infecções por Caliciviridae/complicações , Infecções por Caliciviridae/epidemiologia , Criança , Fezes , Gastroenterite/epidemiologia , Genótipo , Humanos , Filogenia , Prevalência , Sapovirus/genética
20.
BMC Infect Dis ; 23(1): 265, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37101126

RESUMO

BACKGROUND: Viral acute gastroenteritis (AG) is detected worldwide annually. Outbreaks caused by viruses associated with gastroenteritis have been reported repeatedly at the same facilities in Yokohama, Japan over several years. We investigated the statuses of these repeated outbreaks to consider herd immunity at the facility level. METHODS: Between September 2007 and August 2017, 1459 AG outbreaks were reported at 1099 facilities. Stool samples were collected for virological testing, and the norovirus gene was amplified and sequenced to determine the genotype using the N-terminal region of the capsid. RESULTS: The outbreaks were caused by norovirus, sapovirus, rotavirus A, and rotavirus C. Norovirus was consistently predominant over the 10-year period. Of 1099 facilities, 227 reported multiple outbreaks, of which norovirus-only combinations accounted for 76.2%. More outbreaks were due to different genotype combinations than the same genotype combinations. For facilities that experienced two norovirus outbreaks, the average interval between outbreaks was longer for groups with the same combinations than for groups with different genogroup or genotype combinations, although no statistically significant differences were observed. At 44 facilities, outbreaks occurred repeatedly during the same AG season, and most exhibited combinations of different norovirus genotypes or viruses. Among 49 combinations with the same norovirus genotype at the same facilities over 10 years, the most prevalent genotypes were combinations of genogroup II genotype 4 (GII.4), followed by GII.2, GII.6, GII.3, GII.14, and GI.3. The mean interval between outbreaks was 31.2 ± 26.8 months for all combinations, and the mean intervals were longer for non-GII.4 genotype cases than for GII.4 cases, and statistically significant differences were observed (t-test, P < 0.05). Additionally, these average intervals were longer for kindergarten/nursery schools and primary schools than for nursing homes for older adults (t-test, P < 0.05). CONCLUSIONS: Repeated AG outbreaks at the same facilities in Yokohama during the 10-year study period included mainly norovirus combinations. Herd immunity at the facility level was maintained for at least the same AG season. Norovirus genotype-specific herd immunity was maintained for an average of 31.2 months during the study period, and these intervals differed depending on genotype.


Assuntos
Infecções por Caliciviridae , Enterite , Gastroenterite , Norovirus , Vírus , Humanos , Idoso , Norovirus/genética , Imunidade Coletiva , Infecções por Caliciviridae/epidemiologia , Gastroenterite/epidemiologia , Enterite/epidemiologia , Vírus/genética , Genótipo , Surtos de Doenças , Filogenia , RNA Viral/genética , Fezes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA