Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Toxicol Appl Pharmacol ; 484: 116870, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395364

RESUMO

The development of refractory status epilepticus (SE) following sarin intoxication presents a therapeutic challenge. Here, we evaluated the efficacy of delayed combined double or triple treatment in reducing abnormal epileptiform seizure activity (ESA) and the ensuing long-term neuronal insult. SE was induced in rats by exposure to 1.2 LD50 sarin followed by treatment with atropine and TMB4 (TA) 1 min later. Double treatment with ketamine and midazolam or triple treatment with ketamine, midazolam and levetiracetam was administered 30 min post-exposure, and the results were compared to those of single treatment with midazolam alone or triple treatment with ketamine, midazolam, and valproate, which was previously shown to ameliorate this neurological insult. Toxicity and electrocorticogram activity were monitored during the first week, and behavioral evaluations were performed 2 weeks post-exposure, followed by biochemical and immunohistopathological analyses. Both double and triple treatment reduced mortality and enhanced weight recovery compared to TA-only treatment. Triple treatment and, to a lesser extent, double treatment significantly ameliorated the ESA duration. Compared to the TA-only or the TA+ midazolam treatment, both double and triple treatment reduced the sarin-induced increase in the neuroinflammatory marker PGE2 and the brain damage marker TSPO and decreased gliosis, astrocytosis and neuronal damage. Finally, both double and triple treatment prevented a change in behavior, as measured in the open field test. No significant difference was observed between the efficacies of the two triple treatments, and both triple combinations completely prevented brain injury (no differences from the naïve rats). Delayed double and, to a greater extent, triple treatment may serve as an efficacious delayed therapy, preventing brain insult propagation following sarin-induced refractory SE.


Assuntos
Lesões Encefálicas , Ketamina , Agentes Neurotóxicos , Estado Epiléptico , Ratos , Animais , Sarina/toxicidade , Agentes Neurotóxicos/toxicidade , Midazolam/farmacologia , Midazolam/uso terapêutico , Ratos Sprague-Dawley , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/tratamento farmacológico , Colinérgicos/efeitos adversos , Lesões Encefálicas/induzido quimicamente
2.
J Fluoresc ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421600

RESUMO

The simplicity of synthesis, significant toxicity of organophosphorus-containing nerve agents, and ease of use of their in-terrorism attacks highlight the necessity to create efficient probes and precise methods for detecting these chemicals. This study developed luminogenic probe 4-(1 H-phenanthrene imidazole-2-yl) benzaldehyde, PB for selectively recognizing lethal chemical sarin mimicking diethylchlorophosphate (DCP) with µM detection limit. Following the addition of DCP to the PB solution, the fluorescence changed from bluish-cyan to green simultaneously; after the insertion of triethylamine (TEA) into the PB-DCP phosphorylated solution, the fluorescence of the original one came back, and it occurred five times. A paper strip-based test kit and dip-stick experiments have been executed to demonstrate the practical applicability of our sensor PB and instant, on-site recognition of the target analyte DCP. An experiment has been investigated using a smartphone and red-green-blue (RGB) color analysis, which offers a novel way for the fast, on-site visual detection and quantification of DCP in actual samples. It also reduces equipment costs, speeds up detection times, and substantially simplifies the operation procedure.

3.
J Med Syst ; 48(1): 82, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235718

RESUMO

INTRODUCTION: Chemical mass casualty incidents (MCIs) pose a substantial threat to public health and safety, with the capacity to overwhelm healthcare infrastructure and create societal disorder. Computer simulation systems are becoming an established mechanism to validate these plans due to their versatility, cost-effectiveness and lower susceptibility to ethical problems. METHODS: We created a computer simulation model of an urban subway sarin attack analogous to the 1995 Tokyo sarin incident. We created and combined evacuation, dispersion and victim models with the SIMEDIS computer simulator. We analyzed the effect of several possible approaches such as evacuation policy ('Scoop and Run' vs. 'Stay and Play'), three strategies (on-site decontamination and stabilization, off-site decontamination and stabilization, and on-site stabilization with off-site decontamination), preliminary triage, victim distribution methods, transport supervision skill level, and the effect of search and rescue capacity. RESULTS: Only evacuation policy, strategy and preliminary triage show significant effects on mortality. The total average mortality ranges from 14.7 deaths in the combination of off-site decontamination and Scoop and Run policy with pretriage, to 24 in the combination of onsite decontamination with the Stay and Play and no pretriage. CONCLUSION: Our findings suggest that in a simulated urban chemical MCI, a Stay and Play approach with on-site decontamination will lead to worse outcomes than a Scoop and Run approach with hospital-based decontamination. Quick transport of victims in combination with on-site antidote administration has the potential to save the most lives, due to faster hospital arrival for definitive care.


Assuntos
Simulação por Computador , Planejamento em Desastres , Incidentes com Feridos em Massa , Triagem , Humanos , Planejamento em Desastres/organização & administração , Triagem/organização & administração , Descontaminação/métodos , Sarina , Agentes Neurotóxicos
4.
Environ Monit Assess ; 196(9): 829, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167268

RESUMO

In the presented study, an efficient and fast analytical method was developed for the determination of parathion ethyl as sarin simulant by gas chromatography-mass spectrometry (GC-MS). Dispersive solid phase extraction (DSPE) was performed to concentrate parathion ethyl from soil, plant and water samples. Reduced graphene oxide-iron (II, III) oxide (rGO-Fe3O4) nanocomposite was used as an adsorbent to collect the target analyte from the aqueous sample solutions. After the optimization of extraction/preconcentration parameters, optimum conditions for adsorbent amount, eluent type, mixing type/period, eluent volume and initial sample volume were determined as 15 mg, acetonitrile, vortex/30 s, 100 µL and 10 mL, respectively. Under the optimum conditions, analytical performance of the developed DSPE-GC-MS method was evaluated in terms of limit of detection (LOD), limit of quantitation (LOQ) and dynamic range. Dynamic range, LOD and LOQ values were figured out to be 0.94-235.15 µg/kg, 0.41 µg/kg and 1.36 µg/kg (mass based), respectively. Satisfactory percent recovery results (90.3-125% for soil, 93.5-108.7% for plant, 88.5-112.9% for tap water) were achieved for soil, plant and tap water samples which proved the accuracy and applicability of the developed method. It is predicted that the DSPE-GC-MS method can be accurately used for the detection of sarin in soil, plant and water samples taken from war territories.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Sarina , Poluentes do Solo , Solo , Extração em Fase Sólida , Poluentes Químicos da Água , Extração em Fase Sólida/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Sarina/análise , Poluentes do Solo/análise , Solo/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Paration/análise , Agentes Neurotóxicos/análise , Plantas/química , Limite de Detecção , Grafite/química
5.
Molecules ; 28(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067417

RESUMO

Dried urine spot (DUS) is a micro-sample collection technique, known for its advantages in handling, storage and shipping. It also uses only a small volume of urine, an essential consideration in working with small animals, or in acute medical situations. Alkyl-phosphonic acids are the direct and indicative metabolites of organophosphorus chemical warfare agents (OP-CWAs) and are present in blood and urine shortly after exposure. They are therefore crucially important for monitoring casualties in war and terror scenarios. We report here a new approach for the determination of the metabolites of five CWAs in urine using DUS. The method is based on a simple and rapid sample preparation, using only 50 µL of urine, spotted and dried on DBS paper, extracted using 300 µL methanol/water and analyzed via targeted LC-MS/MS. The detection limits for the five CWAs, sarin (GB), soman (GD), cyclosarin (GF), VX and RVX in human urine were from 0.5 to 5 ng/mL. Recoveries of (40-80%) were obtained in the range of 10-300 ng/mL, with a linear response (R2 > 0.964, R > 0.982). The method is highly stable, even with DUS samples stored up to 5 months at room temperature before analysis. It was implemented in a sarin in vivo exposure experiment on mice, applied for the time course determination of isopropyl methylphosphonic acid (IMPA, sarin hydrolysis product) in mice urine. IMPA was detectable even with samples drawn 60 h after the mice's (IN) exposure to 1 LD50 sarin. This method was also evaluated in a non-targeted screening for multiple potential CWA analogs (LC-Orbitrap HRMS analysis followed by automatic peak detection and library searches). The method developed here is applicable for rapid CWA casualty monitoring.


Assuntos
Substâncias para a Guerra Química , Camundongos , Humanos , Animais , Substâncias para a Guerra Química/análise , Sarina/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Compostos Organofosforados/análise
6.
Anal Bioanal Chem ; 414(13): 3863-3873, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35396608

RESUMO

Sarin is a highly toxic nerve agent classified by the Chemical Weapon Convention as a Schedule 1 chemical with no use other than to kill or injure. Moreover, in recent times, chemical warfare agents have been deployed against both military and civilian populations. Chemical warfare agents always contain minor impurities that can provide important chemical attribution signatures (CAS) that can aid in forensic investigations. In order to understand the trace molecular composition of sarin, various analytical approaches including GC-MS, LC-MS and NMR were used to determine the chemical markers of a set of sarin samples. Precursor materials were studied and the full characterisation of a synthetic process was undertaken in order to provide new insights into potential chemical attribution signatures for this agent. Several compounds that were identified in the precursor were also found in the sarin samples linking it to its method of preparation. The identification of these CAS contributes critical information about a synthetic route to sarin, and has potential for translation to related nerve agents.


Assuntos
Substâncias para a Guerra Química , Agentes Neurotóxicos , Substâncias para a Guerra Química/análise , Cromatografia Líquida/métodos , Cromatografia Gasosa-Espectrometria de Massas , Agentes Neurotóxicos/análise , Sarina/análise , Espectrometria de Massas em Tandem
7.
Inhal Toxicol ; 34(13-14): 412-432, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36394251

RESUMO

Over 40% of veterans from the Persian Gulf War (GW) (1990-1991) suffer from Gulf War Illness (GWI). Thirty years since the GW, the exposure and mechanism contributing to GWI remain unclear. One possible exposure that has been attributed to GWI are chemical warfare agents (CWAs). While there are treatments for isolated symptoms of GWI, the number of respiratory and cognitive/neurological issues continues to rise with minimum treatment options. This issue does not only affect veterans of the GW, importantly these chronic multisymptom illnesses (CMIs) are also growing amongst veterans who have served in the Afghanistan-Iraq war. What both wars have in common are their regions and inhaled exposures. In this review, we will describe the CWA exposures, such as sarin, cyclosarin, and mustard gas in both wars and discuss the various respiratory and neurocognitive issues experienced by veterans. We will bridge the respiratory and neurological symptoms experienced to the various potential mechanisms described for each CWA provided with the most up-to-date models and hypotheses.


Assuntos
Substâncias para a Guerra Química , Síndrome do Golfo Pérsico , Veteranos , Humanos , Substâncias para a Guerra Química/toxicidade , Síndrome do Golfo Pérsico/induzido quimicamente , Guerra do Golfo , Sarina
8.
Toxicol Appl Pharmacol ; 419: 115519, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33823148

RESUMO

The development of refractory status epilepticus (SE) induced by sarin intoxication presents a therapeutic challenge. In our current research we evaluate the efficacy of a delayed combined triple treatment in ending the abnormal epileptiform seizure activity (ESA) and the ensuing of long-term neuronal insult. SE was induced in male Sprague-Dawley rats by exposure to 1.2LD50 sarin insufficiently treated by atropine and TMB4 (TA) 1 min later. Triple treatment of ketamine, midazolam and valproic acid was administered 30 min or 1 h post exposure and was compared to a delayed single treatment with midazolam alone. Toxicity and electrocorticogram activity were monitored during the first week and behavioral evaluation performed 3 weeks post exposure followed by brain biochemical and immunohistopathological analyses. The addition of both single and triple treatments reduced mortality and enhanced weight recovery compared to the TA-only treated group. The triple treatment also significantly minimized the duration of the ESA, reduced the sarin-induced increase in the neuroinflammatory marker PGE2, the brain damage marker TSPO, decreased the gliosis, astrocytosis and neuronal damage compared to the TA+ midazolam or only TA treated groups. Finally, the triple treatment eliminated the sarin exposed increased open field activity, as well as impairing recognition memory as seen in the other experimental groups. The delayed triple treatment may serve as an efficient therapy, which prevents brain insult propagation following sarin-induced refractory SE, even if treatment is postponed for up to 1 h.


Assuntos
Anticonvulsivantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Ketamina/administração & dosagem , Midazolam/administração & dosagem , Sarina , Estado Epiléptico/tratamento farmacológico , Ácido Valproico/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Proteínas de Transporte/metabolismo , Dinoprostona/metabolismo , Modelos Animais de Doenças , Esquema de Medicação , Quimioterapia Combinada , Injeções Intramusculares , Injeções Intraperitoneais , Masculino , Teste de Campo Aberto/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia , Estado Epiléptico/fisiopatologia , Fatores de Tempo
9.
Toxicol Appl Pharmacol ; 419: 115515, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33798593

RESUMO

Exposure to organophosphorus nerve agents (NAs) like sarin (GB) and soman (GD) can lead to sustained seizure activity, or status epilepticus (SE). Previous research has shown that activation of A1 adenosine receptors (A1ARs) can inhibit neuronal excitability, which could aid in SE termination. Two A1AR agonists, 2-Chloro-N6-cyclopentyladenosine (CCPA) and N-Bicyclo(2.2.1)hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA), were effective in terminating GD-induced SE in rats when administered via intraperitoneal (IP) injection. However, IP injection is not a clinically relevant route of administration. This study evaluated the efficacy of these agonists in terminating NA-induced SE when administered via intramuscular (IM) route. Adult male rats were exposed subcutaneously (SC) to either GB (150 µg/kg) or GD (90 µg/kg) and were treated with ENBA or CCPA at 15, 30, or 60 min after seizure onset or left untreated. Up to 7 days after exposure, deeply anesthetized rats were euthanized and perfused brains were removed for histologic assessment of neuropathology (i.e., neuronal damage) in six brain regions (amygdala, cerebral cortex, piriform cortex, thalamus, dorsal hippocampus, and ventral hippocampus). A total neuropathy score (0-24) was determined for each rat by adding the scores from each of the six regions. The higher the total score the more severe the neuropathology. With the GB model and 60 min treatment delay, ENBA-treated rats experienced 78.6% seizure termination (N = 14) and reduced neuropathology (11.6 ± 2.6, N = 5), CCPA-treated rats experienced 85.7% seizure termination (N = 14) and slightly reduced neuropathology (20.7 ± 1.8, N = 6), and untreated rats experienced no seizure termination (N = 13) and severe neuropathology (22.3 ± 1.0, N = 4). With the GD model and 60 min treatment delay, ENBA-treated rats experienced 92.9% seizure termination (N = 14) and reduced neuropathology (13.96 ± 1.8, N = 9), CCPA-treated rats experienced 78.6% seizure termination (N = 14) and slightly reduced neuropathology (22.0 ± 0.9, N = 10); and untreated rats experienced 16.7% seizure termination (N = 12) and severe neuropathology (22.0 ± 1.8, N = 5). While ENBA and CCPA both demonstrate a clear ability to terminate SE when administered up to 60 min after seizure onset, ENBA offers more neuroprotection, making it a promising candidate for NA-induced SE.


Assuntos
Agonistas do Receptor A1 de Adenosina/administração & dosagem , Adenosina/análogos & derivados , Anticonvulsivantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Desoxiadenosinas/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Norbornanos/administração & dosagem , Sarina , Soman , Estado Epiléptico/prevenção & controle , Adenosina/administração & dosagem , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Esquema de Medicação , Injeções Intramusculares , Masculino , Ratos Sprague-Dawley , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia , Fatores de Tempo
10.
Toxicol Appl Pharmacol ; 415: 115443, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33548273

RESUMO

The brain is a critical target for the toxic action of organophosphorus (OP) inhibitors of acetylcholinesterase (AChE) such as the nerve agent sarin. However, the available oxime antidote 2-PAM only reactivates OP-inhibited AChE in peripheral tissues. Monoisonitrosoacetone (MINA), a tertiary oxime, reportedly reactivates AChE in the central nervous system (CNS). The current study investigated whether MINA would be beneficial as a supplemental oxime treatment in preventing lethality and reducing morbidity following lethal sarin exposure, MINA supplement would improve AChE recovery in the body, and MINA would be detectable in the CNS. Guinea pigs were exposed to sarin and treated with atropine sulfate and 2-PAM at one minute. Additional 2-PAM or MINA was administered at 3, 5, 15, or 30 min after sarin exposure. Survival and morbidity were assessed at 2 and 24 h. AChE activity in brain and peripheral tissues was evaluated one hour after MINA and 2-PAM treatment. An in vivo microdialysis technique was used to determine partitioning of MINA into the brain. A liquid chromatography-tandem mass spectrometry method was developed for the analysis of MINA in microdialysates. MINA-treated animals exhibited significantly higher survival and lower morbidity compared to 2-PAM-treated animals. 2-PAM was significantly more effective in reactivating AChE in peripheral tissues, but only MINA reactivated AChE in the CNS. MINA was found in guinea pig brain microdialysate samples beginning at ~10 min after administration in a dose-related manner. The data strongly suggest that a centrally penetrating oxime could provide significant benefit as an adjunct to atropine and 2-PAM therapy for OP intoxication.


Assuntos
Acetilcolinesterase/metabolismo , Antídotos/farmacologia , Encéfalo/efeitos dos fármacos , Reativadores da Colinesterase/farmacologia , Intoxicação por Organofosfatos/prevenção & controle , Oximas/farmacologia , Sarina , Animais , Antídotos/metabolismo , Encéfalo/enzimologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ativação Enzimática , Cobaias , Masculino , Microdiálise , Intoxicação por Organofosfatos/enzimologia , Oximas/metabolismo , Permeabilidade , Compostos de Pralidoxima/metabolismo , Compostos de Pralidoxima/farmacologia , Distribuição Tecidual
11.
Anal Bioanal Chem ; 413(28): 6973-6985, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34549323

RESUMO

Chemical warfare agents continue to pose a real threat to humanity, despite their prohibition under the Chemical Weapons Convention. Sarin is one of the most toxic and lethal representatives of nerve agents. The methodology for the targeted analysis of known sarin metabolites has reached great heights, but little attention has been paid to the untargeted analysis of biological samples of victims exposed to this deadly poisonous substance. At present, the development of computational and statistical methods of analysis offers great opportunities for finding new metabolites or understanding the mechanisms of action or effect of toxic substances on the organism. This study presents the targeted LC-MS/MS determination of methylphosphonic acid and isopropyl methylphosphonic acid in the urine of rats exposed to a non-lethal dose of sarin, as well as the untarget urine analysis by LC-HRMS. Targeted analysis of polar acidic sarin metabolites was performed on a mixed-mode reversed-phase anion-exchange column, and untargeted analysis on a conventional reversed-phase C18 column. Isopropyl methylphosphonic acid was detected and quantified within 5 days after subcutaneous injection of sarin at a dose of 1/4 LD50. A combination of generalized additive mixed models and dose-response analysis with database searches using accurate mass of precursor ions and corresponding MS/MS spectra enabled us to propose new six potential biomarkers of biological response to exposure. The results confirm the well-known fact that sarin poisoning has a significant impact on the victims' metabolome, with inhibition of acetylcholinesterase being just the first step and trigger of the complex toxicodynamic response.


Assuntos
Substâncias para a Guerra Química/análise , Substâncias para a Guerra Química/intoxicação , Cromatografia Líquida/métodos , Sarina/intoxicação , Sarina/urina , Espectrometria de Massas em Tandem/métodos , Animais , Biomarcadores/urina , Substâncias para a Guerra Química/normas , Limite de Detecção , Masculino , Metabolômica/métodos , Ratos , Padrões de Referência , Reprodutibilidade dos Testes , Sarina/normas
12.
J Biochem Mol Toxicol ; 35(6): 1-10, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33682265

RESUMO

Past assassinations and terrorist attacks demonstrate the need for a more effective antidote against nerve agents and other organophosphates (OP) that cause brain damage through inhibition of acetylcholinesterase (AChE). Our lab has invented a platform of phenoxyalkyl pyridinium oximes (US patent 9,277,937) that demonstrate the ability to cross the blood-brain barrier in in vivo rat tests with a sarin surrogate nitrophenyl isopropyl methylphosphonate (NIMP) and provide evidence of brain penetration by reducing cessation time of seizure-like behaviors, accumulation of glial fibrillary acidic protein (GFAP), and hippocampal neuropathology, as opposed to the currently approved oxime, 2-pyridine aldoxime methyl chloride (2-PAM). Using two of the novel oximes (Oximes 1 and 20), this project examined whether gene expression changes might help explain this protection. Expression changes in the piriform cortex were examined using polymerase chain reaction arrays for inflammatory cytokines and receptors. The hippocampus was examined via quantitative polymerase chain reaction for the expression of immediate-early genes involved in brain repair (Bdnf), increasing neurotoxicity (Fos), and apoptosis control (Jdp2, Bcl2l1, Bcl2l11). In the piriform cortex, NIMP significantly stimulated expression for the macrophage inflammatory proteins CCL4, IL-1A, and IL-1B. Oxime 20 by itself elicited the most changes. When it was given therapeutically post-NIMP, the largest change occurred: a 310-fold repression of the inflammatory cytokine, CCL12. In the hippocampus, NIMP increased the expression of the neurotoxicity marker Fos and decreased the expression of neuroprotective Bdnf and antiapoptotic Bcl2l1. Compared with 2-PAM, Oxime 20 stimulated Bcl2l1 expression more and returned expression closer to the vehicle control values.


Assuntos
Acetilcolinesterase , Encéfalo/metabolismo , Reativadores da Colinesterase , Regulação da Expressão Gênica/efeitos dos fármacos , Oximas , Sarina/toxicidade , Acetilcolinesterase/metabolismo , Animais , Encéfalo/patologia , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacocinética , Reativadores da Colinesterase/farmacologia , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/metabolismo , Masculino , Oximas/química , Oximas/farmacocinética , Oximas/farmacologia , Ratos , Ratos Sprague-Dawley
13.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360916

RESUMO

Organophosphorus nerve agents (OPNAs) are highly toxic compounds inhibiting cholinergic enzymes in the central and autonomic nervous systems and neuromuscular junctions, causing severe intoxications in humans. Medical countermeasures and efficient decontamination solutions are needed to counteract the toxicity of a wide spectrum of harmful OPNAs including G, V and Novichok agents. Here, we describe the use of engineered OPNA-degrading enzymes for the degradation of various toxic agents including insecticides, a series of OPNA surrogates, as well as real chemical warfare agents (cyclosarin, sarin, soman, tabun, VX, A230, A232, A234). We demonstrate that only two enzymes can degrade most of these molecules at high concentrations (25 mM) in less than 5 min. Using surface assays adapted from NATO AEP-65 guidelines, we further show that enzyme-based solutions can decontaminate 97.6% and 99.4% of 10 g∙m-2 of soman- and VX-contaminated surfaces, respectively. Finally, we demonstrate that these enzymes can degrade ethyl-paraoxon down to sub-inhibitory concentrations of acetylcholinesterase, confirming their efficacy from high to micromolar doses.


Assuntos
Descontaminação/métodos , Enzimas/química , Inseticidas/química , Agentes Neurotóxicos/química , Compostos Organofosforados/química
14.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361784

RESUMO

The field of gas chromatography-mass spectrometry (GC-MS) in the analysis of chemical warfare agents (CWAs), specifically those involving the organophosphorus-based nerve agents (OPNAs), is a continually evolving and dynamic area of research. The ever-present interest in this field within analytical chemistry is driven by the constant threat posed by these lethal CWAs, highlighted by their use during the Tokyo subway attack in 1995, their deliberate use on civilians in Syria in 2013, and their use in the poisoning of Sergei and Yulia Skripal in Great Britain in 2018 and Alexei Navalny in 2020. These events coupled with their potential for mass destruction only serve to stress the importance of developing methods for their rapid and unambiguous detection. Although the direct detection of OPNAs is possible by GC-MS, in most instances, the analytical chemist must rely on the detection of the products arising from their degradation. To this end, derivatization reactions mainly in the form of silylations and alkylations employing a vast array of reagents have played a pivotal role in the efficient detection of these products that can be used retrospectively to identify the original OPNA.


Assuntos
Agentes Neurotóxicos/análise , Organofosfatos/análise , Compostos Organofosforados/análise , Compostos Organotiofosforados/análise , Sarina/análise , Soman/análise , Alquilação , Fluorbenzenos/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Hidrólise , Metilação , Agentes Neurotóxicos/química , Organofosfatos/química , Compostos Organofosforados/química , Compostos Organotiofosforados/química , Sarina/química , Soman/química
15.
Molecules ; 26(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201878

RESUMO

Composites of metal-organic frameworks and carbon materials have been suggested to be effective materials for the decomposition of chemical warfare agents. In this study, we synthesized UiO-66-NH2/zeolite-templated carbon (ZTC) composites for the adsorption and decomposition of the nerve agents sarin and soman. UiO-66-NH2/ZTC composites with good dispersion were prepared via a solvothermal method. Characterization studies showed that the composites had higher specific surface areas than pristine UiO-66-NH2, with broad pore size distributions centered at 1-2 nm. Owing to their porous nature, the UiO-66-NH2/ZTC composites could adsorb more water at 80% relative humidity. Among the UiO-66-NH2/ZTC composites, U0.8Z0.2 showed the best degradation performance. Characterization and gas adsorption studies revealed that beta-ZTC in U0.8Z0.2 provided additional adsorption and degradation sites for nerve agents. Among the investigated materials, including the pristine materials, U0.8Z0.2 also exhibited the best protection performance against the nerve agents. These results demonstrate that U0.8Z0.2 has the optimal composition for exploiting the degradation performance of pristine UiO-66-NH2 and the adsorption performance of pristine beta-ZTC.


Assuntos
Carbono/química , Estruturas Metalorgânicas/química , Agentes Neurotóxicos/química , Compostos Organometálicos/química , Ácidos Ftálicos/química , Zeolitas/química , Adsorção , Estruturas Metalorgânicas/síntese química , Estruturas Metalorgânicas/ultraestrutura , Microscopia Eletrônica de Varredura , Porosidade , Sarina/química , Soman/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Difração de Raios X
16.
Toxicol Appl Pharmacol ; 396: 114994, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32251685

RESUMO

Anticholinergic treatment is key for effective medical treatment of nerve agent exposure. Atropine is included at a 2 mg intramuscular dose in so-called autoinjectors designed for self- and buddy-aid. As patient cohorts are not available, predicting and evaluating the efficacy of medical countermeasures relies on animal models. The use of atropine as a muscarinic antagonist is based on efficacy achieved in studies in a variety of species. The dose of atropine administered varies considerably across these studies. This is a complicating factor in the prediction of efficacy in the human situation, largely because atropine dosing also influences therapeutic efficacy of oximes and anticonvulsants generally part of the treatment administered. To improve translation of efficacy of dosing regimens, including pharmacokinetics and physiology provide a promising approach. In the current study, pharmacokinetics and physiological parameters obtained using EEG and ECG were assessed in naïve rats and in sarin-exposed rats for two anticholinergic drugs, atropine and scopolamine. The aim was to find a predictive parameter for therapeutic efficacy. Scopolamine and atropine showed a similar bioavailability, but brain levels reached were much higher for scopolamine. Scopolamine exhibited a dose-dependent loss of beta power in naïve animals, whereas atropine did not show any such central effect. This effect was correlated with an enhanced anticonvulsant effect of scopolamine compared to atropine. These findings show that an approach including pharmacokinetics and physiology could contribute to improved dose scaling across species and assessing the therapeutic potential of similar anticholinergic and anticonvulsant drugs against nerve agent poisoning.


Assuntos
Atropina/uso terapêutico , Substâncias para a Guerra Química/intoxicação , Sarina/intoxicação , Escopolamina/uso terapêutico , Animais , Atropina/sangue , Atropina/farmacocinética , Atropina/farmacologia , Química Encefálica/efeitos dos fármacos , Antagonistas Colinérgicos , Eletrocardiografia/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , Masculino , Camundongos , Ratos Wistar , Sarina/antagonistas & inibidores , Escopolamina/sangue , Escopolamina/farmacocinética , Escopolamina/farmacologia , Telemetria/métodos
17.
Toxicol Appl Pharmacol ; 395: 114963, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32209366

RESUMO

BACKGROUND: Sarin is an irreversible organophosphate cholinesterase inhibitor. Following toxic signs, an extensive long-term brain damage is often reported. Thus, we evaluated the efficacy of a novel anticonvulsant drug retigabine, a modulator of neuronal voltage gated K+ channels, as a neuroprotective agent following sarin exposure. METHODS: Rats were exposed to 1 LD50 or 1.2 LD50 sarin and treated at onset of convulsions with retigabine (5 mg/kg, i.p.) alone or in combination with 5 mg/kg atropine and 7.5 mg/kg TMB-4 (TA) respectively. Brain biochemical and immunohistopathological analyses were processed 24 h and 1 week following 1 LD50 sarin exposure and at 4 weeks following exposure to 1.2 LD50 sarin. EEG activity in freely moving rats was also monitored by telemetry during the first week following exposure to 1.2 LD50 and behavior in the Open Field was evaluated 3 weeks post exposure. RESULTS: Treatment with retigabine following 1 LD50 sarin exposure or in combination with TA following 1.2 LD50 exposure significantly reduced mortality rate compared to the non-treated groups. In both experiments, the retigabine treatment significantly reduced gliosis, astrocytosis and brain damage as measured by translocator protein (TSPO). Following sarin exposure the combined treatment (retigabine+ TA) significantly minimized epileptiform seizure activity. Finally, in the Open Field behavioral test the non-treated sarin group showed an increased mobility which was reversed by the combined treatment. CONCLUSIONS: The M current modulator retigabine has been shown to be an effective adjunct therapy following OP induced convulsion, minimizing epileptiform seizure activity and attenuating the ensuing brain damage.


Assuntos
Anticonvulsivantes/administração & dosagem , Encefalopatias/induzido quimicamente , Encefalopatias/prevenção & controle , Carbamatos/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Fenilenodiaminas/administração & dosagem , Sarina/toxicidade , Animais , Atropina/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encefalopatias/patologia , Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/toxicidade , Masculino , Neuroglia/patologia , Neurônios/patologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/prevenção & controle , Trimedoxima/administração & dosagem
18.
Crit Rev Toxicol ; 50(6): 474-490, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32755358

RESUMO

Sarin is a highly toxic nerve agent that was developed for chemical warfare during World War II and is used in present conflicts. Immediate effects of acute sarin exposure are established; however, whether effects persist after initial signs have subsided is debated. The National Toxicology Program (NTP) conducted a systematic review to evaluate the evidence for long-term neurological effects following acute (<24 hour) exposure to sarin. The literature search and screening process identified 32 data sets within the 34 human studies and 47 data sets within the 51 animal studies (from 6837 potentially relevant references) that met the objective and the inclusion criteria. Four main health effect categories of neurological response were identified as having sufficient data to reach hazard conclusions: (1) cholinesterase levels; (2) visual and ocular effects; (3) effects on learning, memory, and intelligence; and (4) morphology and histopathology in nervous system tissues. NTP concluded that acute sarin exposure is known to be a neurological hazard to humans in the period following exposure up to 7 days and suspected to be a hazard week to years after exposure, given a lower level of evidence in later time periods. Effects included reduced cholinesterase, visual and ocular effects, impaired learning and memory, and altered nervous system morphology. Further mechanistic, targeted animal studies, translational research, and rapid research responses after human exposures may reduce uncertainties on long-term consequences of sarin.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Agentes Neurotóxicos , Sarina , Substâncias para a Guerra Química , Humanos , Tempo
19.
Crit Rev Toxicol ; 50(9): 764-779, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33185501

RESUMO

Organophosphorus agents (OP) are widely used as pesticides due to their cost effectiveness, yet they present a significant public health risk owing to their high toxicity, especially in cases of occupational exposure in agriculture, during suicide attempts using pesticides, and as nerve agents in warfare. Their vigorous permeability through inhalation, ingestion, and dermal exposure results in a high number of reported OP poisoning cases and alarming mortality rates. Initial first-aid management involves decontamination, ventilation, and hemodialysis. Additionally, current treatment guidelines recommend prompt administration of atropine as a first-line antidote, oximes as a follow-up, benzodiazepines for seizure control, and pyridostigmine for prophylaxis. Nevertheless, current treatment options are associated with several challenges. Thus, recent research has focused on investigating novel approaches for their potential in improving current management strategies. This article intends to review recent advances in OP poisoning treatment, including agents investigated for their use as an alternative or adjunctive therapy, novel formulations such as nasal drops or sublingual tablets for emergency administration of atropine, as well as innovative strategies for enhanced oximes delivery and overall efficacy. However, two major barriers may limit these innovations, ethical issues associated with their clinical assessment in emergencies, and limited profitability in countries where most cases occur.


Assuntos
Intoxicação por Organofosfatos/tratamento farmacológico , Animais , Antídotos/uso terapêutico , Atropina/uso terapêutico , Substâncias para a Guerra Química , Inibidores da Colinesterase , Humanos , Organofosfatos , Compostos Organofosforados , Oximas , Praguicidas/toxicidade , Convulsões
20.
Arch Toxicol ; 94(11): 3751-3757, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32720193

RESUMO

We present a simple method for chiral separation and analysis of organophosphorus nerve agents and apply it to monitor the enantioselective blood elimination kinetics of sarin in-vitro. The method is implemented in standard reverse phase LC-MS operating conditions, relieving the user of the dedicated operating conditions frequently demanded in chiral LC-MS analysis. The method consists of formation of diastereomers by a rapid derivatization with (R)-2-(1 aminoethyl) phenol, followed by LC-MS/MS analysis. Derivatization enantioselectivity was studied by comparing the reaction of optically pure sarin and racemic sarin, proving no substantial enantiomeric preference in the reaction and demonstrating the enantiomeric discrimination abilities of the technique. Enantioselective sarin elimination pathways were probed in-vitro by following the fast elimination kinetics of the two sarin enantiomers as well as its hydrolysis metabolite (isopropyl methyl-phosphonic acid, IMPA) in whole blood and plasma compared to water. Sarin enantiomers showed the known marked differences in elimination kinetics with rapid elimination of the (+) enantiomer and slower elimination of the (-) enantiomer in whole blood and plasma as well as dose-dependent kinetics (faster elimination at lower concentrations). We found that small amounts of acetonitrile in plasma prevent the rapid elimination of the (+) enantiomer, resulting in similar, slower elimination kinetics for both enantiomers.


Assuntos
Sarina/metabolismo , Sarina/farmacocinética , Sangue/metabolismo , Substâncias para a Guerra Química/metabolismo , Substâncias para a Guerra Química/farmacocinética , Cromatografia Líquida , Humanos , Hidrólise , Agentes Neurotóxicos/metabolismo , Agentes Neurotóxicos/farmacocinética , Compostos Organofosforados/metabolismo , Compostos Organofosforados/farmacocinética , Estereoisomerismo , Espectrometria de Massas em Tandem , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA