Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Annu Rev Genet ; 55: 583-602, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34813350

RESUMO

We are entering a new era in genomics where entire centromeric regions are accurately represented in human reference assemblies. Access to these high-resolution maps will enable new surveys of sequence and epigenetic variation in the population and offer new insight into satellite array genomics and centromere function. Here, we focus on the sequence organization and evolution of alpha satellites, which are credited as the genetic and genomic definition of human centromeres due to their interaction with inner kinetochore proteins and their importance in the development of human artificial chromosome assays. We provide an overview of alpha satellite repeat structure and array organization in the context of these high-quality reference data sets; discuss the emergence of variation-based surveys; and provide perspective on the role of this new source of genetic and epigenetic variation in the context of chromosome biology, genome instability, and human disease.


Assuntos
Centrômero , Genoma , Centrômero/genética , Instabilidade Genômica/genética , Genômica , Humanos
2.
Genes Dev ; 35(11-12): 914-935, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33985970

RESUMO

Small noncoding piRNAs act as sequence-specific guides to repress complementary targets in Metazoa. Prior studies in Drosophila ovaries have demonstrated the function of the piRNA pathway in transposon silencing and therefore genome defense. However, the ability of the piRNA program to respond to different transposon landscapes and the role of piRNAs in regulating host gene expression remain poorly understood. Here, we comprehensively analyzed piRNA expression and defined the repertoire of their targets in Drosophila melanogaster testes. Comparison of piRNA programs between sexes revealed sexual dimorphism in piRNA programs that parallel sex-specific transposon expression. Using a novel bioinformatic pipeline, we identified new piRNA clusters and established complex satellites as dual-strand piRNA clusters. While sharing most piRNA clusters, the two sexes employ them differentially to combat the sex-specific transposon landscape. We found two piRNA clusters that produce piRNAs antisense to four host genes in testis, including CG12717/pirate, a SUMO protease gene. piRNAs encoded on the Y chromosome silence pirate, but not its paralog, to exert sex- and paralog-specific gene regulation. Interestingly, pirate is targeted by endogenous siRNAs in a sibling species, Drosophila mauritiana, suggesting distinct but related silencing strategies invented in recent evolution to regulate a conserved protein-coding gene.


Assuntos
Adaptação Fisiológica/genética , Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Germinativas/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Feminino , Masculino , Caracteres Sexuais , Fatores Sexuais
3.
EMBO J ; 42(18): e114331, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37526230

RESUMO

Satellite DNA is characterized by long, tandemly repeated sequences mainly found in centromeres and pericentromeric chromosomal regions. The recent advent of telomere-to-telomere sequencing data revealed the complete sequences of satellite regions, including centromeric α-satellites and pericentromeric HSat1-3, which together comprise ~ 5.7% of the human genome. Despite possessing constitutive heterochromatin features, these regions are transcribed to produce long noncoding RNAs with highly repetitive sequences that associate with specific sets of proteins to play various regulatory roles. In certain stress or pathological conditions, satellite RNAs are induced to assemble mesoscopic membraneless organelles. Specifically, under heat stress, nuclear stress bodies (nSBs) are scaffolded by HSat3 lncRNAs, which sequester hundreds of RNA-binding proteins. Upon removal of the stressor, nSBs recruit additional regulatory proteins, including protein kinases and RNA methylases, which modify the previously sequestered nSB components. The sequential recruitment of substrates and enzymes enables nSBs to efficiently regulate the splicing of hundreds of pre-mRNAs under limited temperature conditions. This review discusses the structural features and regulatory roles of satellite RNAs in intracellular architecture and gene regulation.


Assuntos
RNA Longo não Codificante , RNA Satélite , Humanos , RNA Satélite/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , DNA Satélite/genética , Heterocromatina , Centrômero/metabolismo
4.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38865490

RESUMO

Maintaining genome integrity is vital for organismal survival and reproduction. Essential, broadly conserved DNA repair pathways actively preserve genome integrity. However, many DNA repair proteins evolve adaptively. Ecological forces like UV exposure are classically cited drivers of DNA repair evolution. Intrinsic forces like repetitive DNA, which also imperil genome integrity, have received less attention. We recently reported that a Drosophila melanogaster-specific DNA satellite array triggered species-specific, adaptive evolution of a DNA repair protein called Spartan/MH. The Spartan family of proteases cleave hazardous, covalent crosslinks that form between DNA and proteins ("DNA-protein crosslink repair"). Appreciating that DNA satellites are both ubiquitous and universally fast-evolving, we hypothesized that satellite DNA turnover spurs adaptive evolution of DNA-protein crosslink repair beyond a single gene and beyond the D. melanogaster lineage. This hypothesis predicts pervasive Spartan gene family diversification across Drosophila species. To study the evolutionary history of the Drosophila Spartan gene family, we conducted population genetic, molecular evolution, phylogenomic, and tissue-specific expression analyses. We uncovered widespread signals of positive selection across multiple Spartan family genes and across multiple evolutionary timescales. We also detected recurrent Spartan family gene duplication, divergence, and gene loss. Finally, we found that ovary-enriched parent genes consistently birthed functionally diverged, testis-enriched daughter genes. To account for Spartan family diversification, we introduce a novel mechanistic model of antagonistic coevolution that links DNA satellite evolution and adaptive regulation of Spartan protease activity. This framework promises to accelerate our understanding of how DNA repeats drive recurrent evolutionary innovation to preserve genome integrity.


Assuntos
Reparo do DNA , Proteínas de Drosophila , Evolução Molecular , Duplicação Gênica , Animais , Proteínas de Drosophila/genética , Filogenia , Drosophila melanogaster/genética , Drosophila/genética , Família Multigênica , Seleção Genética , DNA Satélite/genética
5.
Semin Cell Dev Biol ; 128: 15-25, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35644878

RESUMO

Satellite DNAs are present on every chromosome in the cell and are typically enriched in repetitive, heterochromatic parts of the human genome. Sex chromosomes represent a unique genomic and epigenetic context. In this review, we first report what is known about satellite DNA biology on human X and Y chromosomes, including repeat content and organization, as well as satellite variation in typical euploid individuals. Then, we review sex chromosome aneuploidies that are among the most common types of aneuploidies in the general population, and are better tolerated than autosomal aneuploidies. This is demonstrated also by the fact that aging is associated with the loss of the X, and especially the Y chromosome. In addition, supernumerary sex chromosomes enable us to study general processes in a cell, such as analyzing heterochromatin dosage (i.e. additional Barr bodies and long heterochromatin arrays on Yq) and their downstream consequences. Finally, genomic and epigenetic organization and regulation of satellite DNA could influence chromosome stability and lead to aneuploidy. In this review, we argue that the complete annotation of satellite DNA on sex chromosomes in human, and especially in centromeric regions, will aid in explaining the prevalence and the consequences of sex chromosome aneuploidies.


Assuntos
DNA Satélite , Heterocromatina , Aneuploidia , Centrômero/genética , Cromossomos Humanos , DNA Satélite/genética , Heterocromatina/genética , Humanos , Cromossomos Sexuais/genética
6.
Semin Cell Dev Biol ; 128: 69-77, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35469677

RESUMO

Satellite DNAs are arrays of tandem repeats found in the eukaryotic genome. They are mainly found in pericentromeric heterochromatin and have been believed to be mostly inert, leading satellite DNAs to be erroneously regarded as junk. Recent studies have started to elucidate the function of satellite DNA, yet little is known about the peculiar case where satellite DNA is found within the introns of protein coding genes, resulting in incredibly large introns, a phenomenon termed intron gigantism. Studies in Drosophila demonstrated that satellite DNA-containing introns are transcribed with the gene and require specialized mechanisms to overcome the burdens imposed by the extremely long stretches of repetitive DNA. Whether intron gigantism confers any benefit or serves any functional purpose for cells and/or organisms remains elusive. Here we review our current understanding of intron gigantism: where it is found, the challenges it imposes, how it is regulated and what purpose it may serve.


Assuntos
DNA Satélite , Gigantismo , Animais , DNA Satélite/genética , Drosophila/genética , Gigantismo/genética , Heterocromatina/genética , Íntrons
7.
Semin Cell Dev Biol ; 128: 26-39, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35144860

RESUMO

Simple non-coding tandem repeats known as satellite DNA are observed widely across eukaryotes. These repeats occupy vast regions at the centromere and pericentromere of chromosomes but their contribution to cellular function has remained incompletely understood. Here, we review the literature on pericentromeric satellite DNA and discuss its organization and functions across eukaryotic species. We specifically focus on chromocenters, DNA-dense nuclear foci that contain clustered pericentromeric satellite DNA repeats from multiple chromosomes. We first discuss chromocenter formation and the roles that epigenetic modifications, satellite DNA transcripts and sequence-specific satellite DNA-binding play in this process. We then review the newly emerging functions of chromocenters in genome encapsulation, the maintenance of cell fate and speciation. We specifically highlight how the rapid divergence of satellite DNA repeats impacts reproductive isolation between closely related species. Together, we underline the importance of this so-called 'junk DNA' in fundamental biological processes.


Assuntos
DNA Satélite , Heterocromatina , Núcleo Celular , Centrômero/genética , Análise por Conglomerados , DNA Satélite/genética , Heterocromatina/genética
8.
Semin Cell Dev Biol ; 128: 61-68, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35484025

RESUMO

The need of large-scale chromatin organization in the nucleus has become more and more appreciated. The higher order nuclear organization ultimately regulate a plethora of biological processes including transcription, DNA replication, and DNA repair. In this context, it is of critical importance to understand the mechanisms that allow higher order nuclear organization. Scaffold Attachment Factor A (SAF-A/hnRNPU), which was originally identified as the component of nuclear matrix, has emerged as an important regulator of higher order nuclear organization. It is shown that SAF-A/hnRNPU binds to tandem repeats (TRs) and scaffold/matrix attachment regions (S/MAR) in a sequence-non-specific, but structure-specific manner (e.g. DNA curvature). Recent studies showed that SAF-A interacts with chromatin-associated RNAs (caRNAs) to regulate interphase chromatin structures in a transcription-dependent manner. It is proposed that SAF-A/hnRNPU and caRNAs form a dynamic, transcriptionally responsive chromatin mesh that organizes chromatin in a large scale. The common structural features of S/MAR and pericentromeric (periCEN) TR promotes SAF-A-mediated association with each other. Collectively a model is presented wherein SAF-A/hnRNPU and periCEN TR are the key players in large-scale nuclear organization that supports general transcription.


Assuntos
Fenômenos Biológicos , DNA Satélite , Cromatina/genética , Cromatina/metabolismo , DNA Satélite/análise , DNA Satélite/metabolismo , Regiões de Interação com a Matriz/genética , Matriz Nuclear/química , Matriz Nuclear/metabolismo , RNA/metabolismo
9.
Semin Cell Dev Biol ; 128: 2-14, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35487859

RESUMO

The classical human satellite DNAs, also referred to as human satellites 1, 2 and 3 (HSat1, HSat2, HSat3, or collectively HSat1-3), occur on most human chromosomes as large, pericentromeric tandem repeat arrays, which together constitute roughly 3% of the human genome (100 megabases, on average). Even though HSat1-3 were among the first human DNA sequences to be isolated and characterized at the dawn of molecular biology, they have remained almost entirely missing from the human genome reference assembly for 20 years, hindering studies of their sequence, regulation, and potential structural roles in the nucleus. Recently, the Telomere-to-Telomere Consortium produced the first truly complete assembly of a human genome, paving the way for new studies of HSat1-3 with modern genomic tools. This review provides an account of the history and current understanding of HSat1-3, with a view towards future studies of their evolution and roles in health and disease.


Assuntos
DNA Satélite , Genômica , DNA Satélite/genética , Genoma Humano/genética , Humanos
10.
Plant J ; 116(4): 1003-1017, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37675609

RESUMO

Populus species play a foundational role in diverse ecosystems and are important renewable feedstocks for bioenergy and bioproducts. Hybrid aspen Populus tremula × P. alba INRA 717-1B4 is a widely used transformation model in tree functional genomics and biotechnology research. As an outcrossing interspecific hybrid, its genome is riddled with sequence polymorphisms which present a challenge for sequence-sensitive analyses. Here we report a telomere-to-telomere genome for this hybrid aspen with two chromosome-scale, haplotype-resolved assemblies. We performed a comprehensive analysis of the repetitive landscape and identified both tandem repeat array-based and array-less centromeres. Unexpectedly, the most abundant satellite repeats in both haplotypes lie outside of the centromeres, consist of a 147 bp monomer PtaM147, frequently span >1 megabases, and form heterochromatic knobs. PtaM147 repeats are detected exclusively in aspens (section Populus) but PtaM147-like sequences occur in LTR-retrotransposons of closely related species, suggesting their origin from the retrotransposons. The genomic resource generated for this transformation model genotype has greatly improved the design and analysis of genome editing experiments that are highly sensitive to sequence polymorphisms. The work should motivate future hypothesis-driven research to probe into the function of the abundant and aspen-specific PtaM147 satellite DNA.


Assuntos
DNA Satélite , Populus , DNA Satélite/genética , Haplótipos/genética , Populus/genética , Ecossistema , Retroelementos , Centrômero/genética
11.
Plant J ; 114(3): 668-682, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36825961

RESUMO

Genetic modifications in plants are crucial tools for fundamental and applied research. Transgene expression usually varies among independent lines or their progeny and is associated with the chromatin structure of the insertion site. Strategies based on understanding how to manipulate the epigenetic state of the inserted gene cassette would help to ensure transgene expression. Here, we report a strategy for chromatin manipulation by the artificial tethering of epigenetic effectors to a synthetic human centromeric repetitive DNA (alphoid DNA) platform in plant Bright-Yellow-2 (BY-2) culture cells. By tethering DNA-methyltransferase (Nicotiana tabacum DRM1), we effectively induced DNA methylation and histone methylation (H3K9me2) on the alphoid DNA platform. Tethering of the Arabidopsis SUVH9, which has been reported to lack histone methyltransferase activity, also induced a similar epigenetic state on the alphoid DNA in BY-2 cells, presumably by activating the RNA-dependent DNA methylation (RdDM) pathway. Our results emphasize that the interplay between DNA and histone methylation mechanisms is intrinsic to plant cells. We also found that once epigenetic modification states were induced by the tethering of either DRM1 or SUVH9, the modification was maintained even when the direct tethering of the effector was inhibited. Our system enables the analysis of more diverse epigenetic effectors and will help to elucidate the chromatin assembly mechanisms of plant cells.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Histonas/genética , Histonas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , DNA/metabolismo , Cromatina/genética , Cromatina/metabolismo , Centrômero/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
12.
Chromosoma ; 132(2): 65-88, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36905415

RESUMO

Fluorescence in situ hybridization is a powerful tool that enables plant researchers to perform systematic, evolutionary, and population studies of wheat wild relatives as well as to characterize alien introgression into the wheat genome. This retrospective review reflects on progress made in the development of methods for creating new chromosomal markers since the launch of this cytogenetic satellite instrument to the present day. DNA probes based on satellite repeats have been widely used for chromosome analysis, especially for "classical" wheat probes (pSc119.2 and Afa family) and "universal" repeats (45S rDNA, 5S rDNA, and microsatellites). The rapid development of new-generation sequencing and bioinformatical tools, and the application of oligo- and multioligonucleotides has resulted in an explosion in the discovery of new genome- and chromosome-specific chromosome markers. Owing to modern technologies, new chromosomal markers are appearing at an unprecedented velocity. The present review describes the specifics of localization when employing commonly used vs. newly developed probes for chromosomes in J, E, V, St, Y, and P genomes and their diploid and polyploid carriers Agropyron, Dasypyrum, Thinopyrum, Pseudoroegneria, Elymus, Roegneria, and Kengyilia. Particular attention is paid to the specificity of probes, which determines their applicability for the detection of alien introgression to enhance the genetic diversity of wheat through wide hybridization. The information from the reviewed articles is summarized into the TRepeT database, which may be useful for studying the cytogenetics of Triticeae. The review describes the trends in the development of technology used in establishing chromosomal markers that can be used for prediction and foresight in the field of molecular biology and in methods of cytogenetic analysis.


Assuntos
Cromossomos de Plantas , Genoma de Planta , Hibridização in Situ Fluorescente/métodos , Cromossomos de Plantas/genética , Poaceae/genética , Triticum/genética , Análise Citogenética , Marcadores Genéticos , DNA Ribossômico
13.
BMC Plant Biol ; 24(1): 88, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38317087

RESUMO

Mounting evidence recognizes structural variations (SVs) and repetitive DNA sequences as crucial players in shaping the existing grape phenotypic diversity at intra- and inter-species levels. To deepen our understanding on the abundance, diversity, and distribution of SVs and repetitive DNAs, including transposable elements (TEs) and tandemly repeated satellite DNA (satDNAs), we re-sequenced the genomes of the ancient grapes Aglianico and Falanghina. The analysis of large copy number variants (CNVs) detected candidate polymorphic genes that are involved in the enological features of these varieties. In a comparative analysis of Aglianico and Falanghina sequences with 21 publicly available genomes of cultivated grapes, we provided a genome-wide annotation of grape TEs at the lineage level. We disclosed that at least two main clusters of grape cultivars could be identified based on the TEs content. Multiple TEs families appeared either significantly enriched or depleted. In addition, in silico and cytological analyses provided evidence for a diverse chromosomal distribution of several satellite repeats between Aglianico, Falanghina, and other grapes. Overall, our data further improved our understanding of the intricate grape diversity held by two Italian traditional varieties, unveiling a pool of unique candidate genes never so far exploited in breeding for improved fruit quality.


Assuntos
Vitis , Humanos , Vitis/genética , Melhoramento Vegetal , Elementos de DNA Transponíveis/genética , DNA Satélite
14.
J Exp Zool B Mol Dev Evol ; 342(4): 368-379, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38407543

RESUMO

Hybrid parthenogenetic animals are an exceptionally interesting model for studying the mechanisms and evolution of sexual and asexual reproduction. A diploid parthenogenetic lizard Darevskia unisexualis is a result of an ancestral cross between a maternal species Darevskia raddei nairensis and a paternal species Darevskia valentini and presents a unique opportunity for a cytogenetic and computational analysis of a hybrid karyotype. Our previous results demonstrated a significant divergence between the pericentromeric DNA sequences of the parental Darevskia species; however, an in-depth comparative study of their pericentromeres is still lacking. Here, using target sequencing of microdissected pericentromeric regions, we reveal and compare the repertoires of the pericentromeric tandem repeats of the parental Darevskia lizards. We found species-specific sequences of the major pericentromeric tandem repeat CLsat, which allowed computational prediction and experimental validation of fluorescent DNA probes discriminating parental chromosomes within the hybrid karyotype of D. unisexualis. Moreover, we have implemented a generalizable computational method, based on the optimization of the Levenshtein distance between tandem repeat monomers, for finding species-specific fluorescent probes for pericentromere staining. In total, we anticipate that our comparative analysis of Darevskia pericentromeric repeats, the species-specific fluorescent probes that we found and the pipeline that we developed will form a basis for the future detailed cytogenomic studies of a wide range of natural and laboratory hybrids.


Assuntos
DNA Satélite , Lagartos , Partenogênese , Animais , Lagartos/genética , DNA Satélite/genética , Partenogênese/genética , Hibridização Genética , Cariótipo , Especificidade da Espécie
15.
Cell Biol Int ; 48(8): 1212-1222, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38946594

RESUMO

JRK is a DNA-binding protein of the pogo superfamily of transposons, which includes the well-known centromere binding protein B (CENP-B). Jrk null mice exhibit epilepsy, and growth and reproductive disorders, consistent with its relatively high expression in the brain and reproductive tissues. Human JRK DNA variants and gene expression levels are implicated in cancers and neuropsychiatric disorders. JRK protein modulates ß-catenin-TCF activity but little is known of its cellular functions. Based on its homology to CENP-B, we determined whether JRK binds centromeric or other satellite DNAs. We show that human JRK binds satellite III DNA, which is abundant at the chromosome 9q12 juxtacentromeric region and on Yq12, both sites of nuclear stress body assembly. Human JRK-GFP overexpressed in HeLa cells strongly localises to 9q12. Using an anti-JRK antiserum we show that endogenous JRK co-localises with a subset of centromeres in non-stressed cells, and with heat shock factor 1 following heat shock. Knockdown of JRK in HeLa cells proportionately reduces heat shock protein gene expression in heat-shocked cells. A role for JRK in regulating the heat shock response is consistent with the mouse Jrk null phenotype and suggests that human JRK may act as a modifier of diseases with a cellular stress component.


Assuntos
DNA Satélite , Proteínas de Ligação a DNA , Resposta ao Choque Térmico , Humanos , DNA Satélite/genética , DNA Satélite/metabolismo , Células HeLa , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos , Centrômero/metabolismo , Ligação Proteica , Proteína B de Centrômero/metabolismo , Proteína B de Centrômero/genética
16.
Chromosome Res ; 31(4): 30, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37812264

RESUMO

Structural karyotype changes result from ectopic recombination events frequently associated with repetitive DNA. Although most Phaseolus species present relatively stable karyotypes with 2n = 22 chromosomes, the karyotypes of species of the Leptostachyus group show high rates of structural rearrangements, including a nested chromosome fusion that led to the dysploid chromosome number of the group (2n = 20). We examined the roles of repetitive landscapes in the rearrangements of species of the Leptostachyus group using genome-skimming data to characterize the repeatome in a range of Phaseolus species and compared them to species of that group (P. leptostachyus and P. macvaughii). LTR retrotransposons, especially the Ty3/gypsy lineage Chromovirus, were the most abundant elements in the genomes. Differences in the abundance of Tekay, Retand, and SIRE elements between P. macvaughii and P. leptostachyus were reflected in their total amounts of Ty3/gypsy and Ty1/copia. The satellite DNA fraction was the most divergent among the species, varying both in abundance and distribution, even between P. leptostachyus and P. macvaughii. The rapid turnover of repeats in the Leptostachyus group may be associated with the several rearrangements observed.


Assuntos
Phaseolus , Phaseolus/genética , DNA de Plantas/genética , DNA Satélite/genética , Retroelementos , Filogenia , Genoma de Planta , Evolução Molecular
17.
J Hered ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38447039

RESUMO

Multicopy sequences evolve adaptations for increasing their copy number within nuclei. The activities of multicopy sequences under constraints imposed by cellular and organismal selection result in a rich intranuclear ecology in germline cells. mtDNA and rDNA are managed as domestic herds subject to selective breeding by the genes of the single-copy genome. Transposable elements lead a peripatetic existence in which they must continually move to new sites to keep ahead of inactivating mutations at old sites and undergo exponential outbreaks when the production of new copies exceeds the rate of inactivation of old copies. Centromeres become populated by repeats that do little harm. Organisms with late sequestration of germ cells tend to evolve more 'junk' in their genomes than organisms with early sequestration of germ cells.

18.
Mol Genet Genomics ; 298(5): 1023-1035, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37233800

RESUMO

Repetitive DNA are sequences repeated hundreds or thousands of times and an abundant part of eukaryotic genomes. SatDNA represents the majority of the repetitive sequences, followed by transposable elements. The species Holochilus nanus (HNA) belongs to the rodent tribe Oryzomyini, the most taxonomically diverse of Sigmodontinae subfamily. Cytogenetic studies on Oryzomyini reflect such diversity by revealing an exceptional range of karyotype variability. However, little is known about the repetitive DNA content and its involvement in chromosomal diversification of these species. In the search for a more detailed understanding about the composition of repetitive DNA on the genome of HNA and other species of Oryzomyini, we employed a combination of bioinformatic, cytogenetic and molecular techniques to characterize the repetitive DNA content of these species. RepeatExplorer analysis showed that almost half of repetitive content of HNA genome are composed by Long Terminal Repeats and a less significant portion are composed by Short Interspersed Nuclear Elements and Long Interspersed Nuclear Elements. RepeatMasker showed that more than 30% of HNA genome are composed by repetitive sequences, with two main waves of repetitive element insertion. It was also possible to identify a satellite DNA sequence present in the centromeric region of Oryzomyini species, and a repetitive sequence enriched on the long arm of HNA X chromosome. Also, comparative analysis between HNA genome with and without B chromosome did not evidence any repeat element enriched on the supernumerary, suggesting that B chromosome of HNA is composed by a fraction of repeats from all the genome.


Assuntos
Arvicolinae , Sigmodontinae , Animais , Ratos , Sigmodontinae/genética , Arvicolinae/genética , Áreas Alagadas , Sequências Repetitivas de Ácido Nucleico/genética , Cariótipo , DNA Satélite/genética , Elementos de DNA Transponíveis/genética
19.
Insect Mol Biol ; 32(6): 725-737, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37615351

RESUMO

Satellite DNAs (satDNAs) are highly repeated tandem sequences primarily located in heterochromatin, although their occurrence in euchromatin has been reported. Here, our aim was to advance the understanding of satDNA and multiple sex chromosome evolution in heteropterans. We combined cytogenetic and genomic approaches to study, for the first time, the satDNA composition of the genome in an Oxycarenidae bug, Oxycarenus hyalinipennis. The species exhibits a male karyotype of 2n = 19 (14A + 2 m + X1 X2 Y), with a highly differentiated Y chromosome, as demonstrated by C-banding and comparative genomic hybridization, revealing an enrichment of repeats from the male genome. Additionally, comparative analysis between males and females revealed that the 26 identified satDNA families are significantly biased towards male genome, accumulating in discrete regions in the Y chromosome. Exceptionally, the OhyaSat04-125 family was found to be distributed virtually throughout the entire extension of the Y chromosome. This suggests an important role of satDNA in Y chromosome differentiation, in comparison of other repeats, which collectively shows similar abundance between sexes, about 50%. Furthermore, chromosomal mapping of all satDNA families revealed an unexpected high spread in euchromatic regions, covering the entire extension, irrespective of their abundance. Only discrete regions of heterochromatin on the Y chromosome and of the m-chromosomes (peculiar chromosomes commonly observed in heteropterans) were enriched with satDNAs. The putative causes of the intense enrichment of satDNAs in euchromatin are discussed, including the possible existence of burst cycles similar to transposable elements and as a result of holocentricity. These data challenge the classical notion that euchromatin is not enriched with satDNAs.


Assuntos
DNA Satélite , Hemípteros , Humanos , Feminino , Masculino , Animais , Eucromatina , Hemípteros/genética , Heterocromatina , Hibridização Genômica Comparativa , Hibridização in Situ Fluorescente , Cromossomos Sexuais , Evolução Molecular
20.
Genetica ; 151(4-5): 267-279, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37656321

RESUMO

This paper describes the preparation of flow-sorted chromosome paints from the Iberian Rock lizard Iberolacerta monticola, exemplifying their subsequent use in cross-species comparisons of chromosome painting. We carried out comparative analyses of chromosome evolution in the congeneric species I. galani and I. bonnali, as well as in two other species of Lacertini (Lacerta schreiberi and Timon lepidus) whose sex chromosomes were also studied through comparative genomic hybridization. Most species of Lacertini possess a diplod number of 2n = 38, with 36 acrocentric macrochromosomes and 2 microchromosomes. However, the nine species included in the genus Iberolacerta do not possess microchromosomes. Furthermore, very conspicuous differences from the standard Lacertini karyotype were observed in the three Pyrenean species of this genus, which included several biarmed metacentrics and a Z1Z2W multiple sex-chromosome system. With the possible exception of L. schreiberi, all the species of the family Lacertidae described to date appear to share homologous Z chromosomes, which date back to the last common ancestor of the whole group. We provide conclusive evidence that L. schreiberi should no longer be considered an exception to this rule, and demonstrate that the loss of microchromosomes in Iberolacerta was produced by their fusion to a middle-sized chromosome. Furthermore, we show that the multiple sex-chromosome system of the Pyrenean species of Iberolacerta originated from the fusion of the ancestral W chromosome with one of the shortest autosomes, and provide additional evidence of the fast evolution of DNA sequences linked to the W chromosome in Lacertini.


Assuntos
Lagartos , Cromossomos Sexuais , Animais , Hibridização Genômica Comparativa , Cariotipagem , Cariótipo , Cromossomos Sexuais/genética , Lagartos/genética , Evolução Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA