Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 327
Filtrar
1.
Brain ; 146(1): 91-108, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35136942

RESUMO

Additional treatment options for temporal lobe epilepsy are needed, and potential interventions targeting the cerebellum are of interest. Previous animal work has shown strong inhibition of hippocampal seizures through on-demand optogenetic manipulation of the cerebellum. However, decades of work examining electrical stimulation-a more immediately translatable approach-targeting the cerebellum has produced very mixed results. We were therefore interested in exploring the impact that stimulation parameters may have on seizure outcomes. Using a mouse model of temporal lobe epilepsy, we conducted on-demand electrical stimulation of the cerebellar cortex, and varied stimulation charge, frequency and pulse width, resulting in over 1000 different potential combinations of settings. To explore this parameter space in an efficient, data-driven, manner, we utilized Bayesian optimization with Gaussian process regression, implemented in MATLAB with an Expected Improvement Plus acquisition function. We examined three different fitting conditions and two different electrode orientations. Following the optimization process, we conducted additional on-demand experiments to test the effectiveness of selected settings. Regardless of experimental setup, we found that Bayesian optimization allowed identification of effective intervention settings. Additionally, generally similar optimal settings were identified across animals, suggesting that personalized optimization may not always be necessary. While optimal settings were effective, stimulation with settings predicted from the Gaussian process regression to be ineffective failed to provide seizure control. Taken together, our results provide a blueprint for exploration of a large parameter space for seizure control and illustrate that robust inhibition of seizures can be achieved with electrical stimulation of the cerebellum, but only if the correct stimulation parameters are used.


Assuntos
Estimulação Encefálica Profunda , Epilepsia do Lobo Temporal , Animais , Estimulação Encefálica Profunda/métodos , Teorema de Bayes , Estimulação Elétrica , Convulsões/terapia , Cerebelo
2.
Network ; : 1-32, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38666558

RESUMO

An innovative multi-level BT classification approach based on deep learning has been proposed in this article. Here, classification is accomplished using the SpinalNet, whose structure is optimized by the Hybrid Coot Flamingo Search Optimization Algorithm (CootFSOA). Further, a novel segmentation approach using CootFSOA-LinkNet is devised for isolating the tumour area from the brain image. Here, the input MRI images are fed into the Adaptive Kalman Filter (AKF) to denoise the image. In the segmentation process, LinkNet is used to separate the tumour region from the MRI image. CootFSOA is used to achieve structural optimization of LinkNet. The segmented image is then used to create several features, and the resulting feature vector is fed into SpinalNet to detect BT. CootFSOA is used in this instance as well to adjust the SpinalNet's hyperparameters and achieve high detection accuracy. If a tumour is detected, second-level classification is carried out by employing the CootFSOA-SpinalNet to classify the input image into several types, such as gliomas, pituitary tumours, and meningiomas. Moreover, the efficacy of the CootFSOA-SpinalNet has been examined considering accuracy, True Positive Rate (TPR), and True Negative Rate (TNR) and has recorded superior values of 0.926, 0.931, and 0.925, respectively.

3.
Network ; 35(1): 73-100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38044853

RESUMO

Nowadays, wireless sensor networks (WSN) have gained huge attention worldwide due to their wide applications in different domains. The limited amount of energy resources is considered as the main limitations of WSN, which generally affect the network life time. Hence, a dynamic clustering and routing model is designed to resolve this issue. In this research work, a deep-learning model is employed for the prediction of energy and an optimization algorithmic technique is designed for the determination of optimal routes. Initially, the dynamic cluster WSN is simulated using energy, mobility, trust, and Link Life Time (LLT) models. The deep neuro-fuzzy network (DNFN) is utilized for the prediction of residual energy of nodes and the cluster workloads are dynamically balanced by the dynamic clustering of data using a fuzzy system. The designed Flamingo Jellyfish Search Optimization (FJSO) model is used for tuning the weights of the fuzzy system by considering different fitness parameters. Moreover, routing is performed using FJSO model which is used for the identification of optimal path to transmit data. In addition, the experimentation is done using MATLAB tool and the results proved that the designed FJSO model attained maximum of 0.657J energy, a minimum of 0.739 m distance, 0.649 s delay, 0.849 trust, and 0.885 Mbps throughput.


Assuntos
Aprendizado Profundo , Algoritmos , Redes de Comunicação de Computadores , Tecnologia sem Fio , Fenômenos Físicos
4.
Environ Res ; 247: 118176, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38215922

RESUMO

With the ongoing process of industrialization, the issue of declining air quality is increasingly becoming a critical concern. Accurate prediction of the Air Quality Index (AQI), considered as an all-inclusive measure representing the extent of pollutants present in the atmosphere, is of paramount importance. This study introduces a novel methodology that combines stacking ensemble and error correction to improve AQI prediction. Additionally, the reptile search algorithm (RSA) is employed for optimizing model parameters. In this study, four distinct regional AQI data containing a collection of 34864 data samples are collected. Initially, we perform cross-validation on ten commonly used single models to obtain prediction results. Then, based on evaluation indices, five models are selected for ensemble. The results of the study show that the model proposed in this paper achieves an improvement of around 10% in terms of accuracy when compared to the conventional model. Thus, the model introduced in this study offers a more scientifically grounded approach in tackling air pollution.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Algoritmos , Projetos de Pesquisa
5.
Sensors (Basel) ; 24(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39123837

RESUMO

Node localization is critical for accessing diverse nodes that provide services in remote places. Single-anchor localization techniques suffer co-linearity, performing poorly. The reliable multiple anchor node selection method is computationally intensive and requires a lot of processing power and time to identify suitable anchor nodes. Node localization in wireless sensor networks (WSNs) is challenging due to the number and placement of anchors, as well as their communication capabilities. These senor nodes possess limited energy resources, which is a big concern in localization. In addition to convention optimization in WSNs, researchers have employed nature-inspired algorithms to localize unknown nodes in WSN. However, these methods take longer, require lots of processing power, and have higher localization error, with a greater number of beacon nodes and sensitivity to parameter selection affecting localization. This research employed a nature-inspired crow search algorithm (an improvement over other nature-inspired algorithms) for selecting the suitable number of anchor nodes from the population, reducing errors in localizing unknown nodes. Additionally, the weighted centroid method was proposed for identifying the exact location of an unknown node. This made the crow search weighted centroid localization (CS-WCL) algorithm a more trustworthy and efficient method for node localization in WSNs, with reduced average localization error (ALE) and energy consumption. CS-WCL outperformed WCL and distance vector (DV)-Hop, with a reduced ALE of 15% (from 32%) and varying communication radii from 20 m to 45 m. Also, the ALE against scalability was validated for CS-WCL against WCL and DV-Hop for a varying number of beacon nodes (from 3 to 2), reducing ALE to 2.59% (from 28.75%). Lastly, CS-WCL resulted in reduced energy consumption (from 120 mJ to 45 mJ) for varying network nodes from 30 to 300 against WCL and DV-Hop. Thus, CS-WCL outperformed other nature-inspired algorithms in node localization. These have been validated using MATLAB 2022b.

6.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38400262

RESUMO

Intelligent workshop UAV inspection path planning is a typical indoor UAV path planning technology. The UAV can conduct intelligent inspection on each work area of the workshop to solve or provide timely feedback on problems in the work area. The sparrow search algorithm (SSA), as a novel swarm intelligence optimization algorithm, has been proven to have good optimization performance. However, the reduction in the SSA's search capability in the middle or late stage of iterations reduces population diversity, leading to shortcomings of the algorithm, including low convergence speed, low solution accuracy and an increased risk of falling into local optima. To overcome these difficulties, an improved sparrow search algorithm (namely the chaotic mapping-firefly sparrow search algorithm (CFSSA)) is proposed by integrating chaotic cube mapping initialization, firefly algorithm disturbance search and tent chaos mapping perturbation search. First, chaotic cube mapping was used to initialize the population to improve the distribution quality and diversity of the population. Then, after the sparrow search, the firefly algorithm disturbance and tent chaos mapping perturbation were employed to update the positions of all individuals in the population to enable a full search of the algorithm in the solution space. This technique can effectively avoid falling into local optima and improve the convergence speed and solution accuracy. The simulation results showed that, compared with the traditional intelligent bionic algorithms, the optimized algorithm provided a greatly improved convergence capability. The feasibility of the proposed algorithm was validated with a final simulation test. Compared with other SSA optimization algorithms, the results show that the CFSSA has the best efficiency. In an inspection path planning problem, the CFSSA has its advantages and applicability and is an applicable algorithm compared to SSA optimization algorithms.

7.
Sensors (Basel) ; 24(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38544019

RESUMO

Electric vehicles with hub motors have integrated the motor into the wheel, which increase the unsprung mass of the vehicle, and intensifies the vibration of the underspring components. The motor excitation during driving also intensifies the wheel vibration. The coupling effect between the two makes the performance of electric vehicles deteriorate. The article employed a disc-type permanent-magnet motor as the hub motor, taking into consideration the increase in sprung mass caused by the hub motor and the adverse effects of vertical vibration from motor excitation. Based on random road-surface excitation, and considering the secondary excitation caused by wheel motor drive and vehicle-road coupling, a coupled-dynamics model of a semi-active-suspension vehicle-road system for vertical vehicle motion is investigated under multiple excitations. Using body acceleration, suspension deflection, and dynamic tire load as evaluation indicators, a BP neural network PID controller based on the sparrow search algorithm optimization is proposed for the semi-active-suspension system. Compared with PID control and particle swarm optimization (PSO-BPNN-PID), the research findings indicate that the optimized semi-active suspension significantly improves the ride comfort of hub-motor electric vehicles, and meets the requirements for control performance under different vehicle driving conditions.

8.
Sensors (Basel) ; 24(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38475214

RESUMO

Motor imagery (MI)-based brain-computer interface (BCI) has emerged as a crucial method for rehabilitating stroke patients. However, the variability in the time-frequency distribution of MI-electroencephalography (EEG) among individuals limits the generalizability of algorithms that rely on non-customized time-frequency segments. In this study, we propose a novel method for optimizing time-frequency segments of MI-EEG using the sparrow search algorithm (SSA). Additionally, we apply a correlation-based channel selection (CCS) method that considers the correlation coefficient of features between each pair of EEG channels. Subsequently, we utilize a regularized common spatial pattern method to extract effective features. Finally, a support vector machine is employed for signal classification. The results on three BCI datasets confirmed that our algorithm achieved better accuracy (99.11% vs. 94.00% for BCI Competition III Dataset IIIa, 87.70% vs. 81.10% for Chinese Academy of Medical Sciences dataset, and 87.94% vs. 81.97% for BCI Competition IV Dataset 1) compared to algorithms with non-customized time-frequency segments. Our proposed algorithm enables adaptive optimization of EEG time-frequency segments, which is crucial for the development of clinically effective motor rehabilitation.


Assuntos
Interfaces Cérebro-Computador , Acidente Vascular Cerebral , Humanos , Imaginação , Imagens, Psicoterapia/métodos , Eletroencefalografia/métodos , Algoritmos
9.
Sensors (Basel) ; 24(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257586

RESUMO

We aimed to improve the detection accuracy of laser methane sensors in expansive temperature application environments. In this paper, a large-scale dataset of the measured concentration of the sensor at different temperatures is established, and a temperature compensation model based on the ISSA-BP neural network is proposed. On the data side, a large-scale dataset of 15,810 sets of laser methane sensors with different temperatures and concentrations was established, and an Improved Isolation Forest algorithm was used to clean the large-scale data and remove the outliers in the dataset. On the modeling framework, a temperature compensation model based on the ISSA-BP neural network is proposed. The quasi-reflective learning, chameleon swarm algorithm, Lévy flight, and artificial rabbits optimization are utilized to improve the initialization of the sparrow population, explorer position, anti-predator position, and position of individual sparrows in each generation, respectively, to improve the global optimization seeking ability of the standard sparrow search algorithm. The ISSA-BP temperature compensation model far outperforms the four models, SVM, RF, BP, and PSO-BP, in model evaluation metrics such as MAE, MAPE, RMSE, and R-square for both the training and test sets. The results show that the algorithm in this paper can significantly improve the detection accuracy of the laser methane sensor under the wide temperature application environment.

10.
Sensors (Basel) ; 24(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39001204

RESUMO

To address the issues of sluggish response and inadequate precision in traditional gate opening control systems, this study presents a novel approach for direct current (DC) motor control utilizing an enhanced beetle antennae search (BAS) algorithm to fine-tune the parameters of a fuzzy proportional integral derivative (PID) controller. Initially, the mathematical model of the DC motor drive system is formulated. Subsequently, employing a search algorithm, the three parameters of the PID controller are optimized in accordance with the control requirements. Next, software simulation is employed to analyze the system's response time and overshoot. Furthermore, a comparative analysis is conducted between fuzzy PID control based on the improved beetle antennae search algorithm, and conventional approaches such as the traditional beetle antennae search algorithm, the traditional particle swarm algorithm, and the enhanced particle swarm algorithm. The findings indicate the superior performance of the proposed method, characterized by reduced oscillations and accelerated convergence compared to the alternative methods.

11.
Sensors (Basel) ; 24(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38400379

RESUMO

In multi-finger coordinated keystroke actions by professional pianists, movements are precisely regulated by multiple motor neural centers, exhibiting a certain degree of coordination in finger motions. This coordination enhances the flexibility and efficiency of professional pianists' keystrokes. Research on the coordination of keystrokes in professional pianists is of great significance for guiding the movements of piano beginners and the motion planning of exoskeleton robots, among other fields. Currently, research on the coordination of multi-finger piano keystroke actions is still in its infancy. Scholars primarily focus on phenomenological analysis and theoretical description, which lack accurate and practical modeling methods. Considering that the tendon of the ring finger is closely connected to adjacent fingers, resulting in limited flexibility in its movement, this study concentrates on coordinated keystrokes involving the middle and ring fingers. A motion measurement platform is constructed, and Leap Motion is used to collect data from 12 professional pianists. A universal model applicable to multiple individuals for multi-finger coordination in keystroke actions based on the backpropagation (BP) neural network is proposed, which is optimized using a genetic algorithm (GA) and a sparrow search algorithm (SSA). The angular rotation of the ring finger's MCP joint is selected as the model output, while the individual difference information and the angular data of the middle finger's MCP joint serve as inputs. The individual difference information used in this study includes ring finger length, middle finger length, and years of piano training. The results indicate that the proposed SSA-BP neural network-based model demonstrates superior predictive accuracy, with a root mean square error of 4.8328°. Based on this model, the keystroke motion of the ring finger's MCP joint can be accurately predicted from the middle finger's keystroke motion information, offering an evaluative method and scientific guidance for the training of multi-finger coordinated keystrokes in piano learners.


Assuntos
Destreza Motora , Música , Humanos , Fenômenos Biomecânicos , Dedos , Movimento
12.
Sensors (Basel) ; 24(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794027

RESUMO

The dependable functioning of switchgear is essential to maintain the stability of power supply systems. Partial discharge (PD) is a critical phenomenon affecting the insulation of switchgear, potentially leading to equipment failure and accidents. PDs are generally grouped into metal particle discharge, suspended discharge, and creeping discharge. Different types of PDs are closely related to the severity of a PD. Partial discharge pattern recognition (PDPR) plays a vital role in the early detection of insulation defects. In this regard, a Back Propagation Neural Network (BPNN) for PDPR in switchgear is proposed in this paper. To eliminate the sensitivity to initial values of BPNN parameters and to enhance the generalized ability of the proposed BPRN, an improved Mantis Search Algorithm (MSA) is proposed to optimize the BPNN. The improved MSA employs some boundary handling strategies and adaptive parameters to enhance the algorithm's efficiency in optimizing the network parameters of BPNN. Principal Component Analysis (PCA) is introduced to reduce the dimensionality of the feature space to achieve significant time saving in comparable recognition accuracy. The initially extracted 14 feature values are reduced to 7, reducing the BPNN parameter count from 183 with 14 features to 113 with 7 features. Finally, numerical results are presented and compared with Decision Tree (DT), k-Nearest Neighbor classifiers (KNN), and Support Vector Machine (SVM). The proposed method in this paper exhibits the highest recognition accuracy in metal particle discharge and suspended discharge.

13.
Water Sci Technol ; 89(9): 2273-2289, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747949

RESUMO

Water quality predicted accuracy is beneficial to river ecological management and water pollution prevention. Owing to water quality data has the characteristics of nonlinearity and instability, it is difficult to predict the change of water quality. This paper proposes a hybrid water quality prediction model based on variational mode decomposition optimized by the sparrow search algorithm (SSA-VMD) and bidirectional gated recursive unit (BiGRU). First, the sparrow search algorithm selects fuzzy entropy (FE) as the fitness function to optimize the two parameters of VMD, which improves the adaptability of VMD. Second, SSA-VMD is used to decompose the original data into several components with different center frequencies. Finally, BiGRU is employed to predict each component separately, which significantly improves predicted accuracy. The proposed model is validated using data about dissolved oxygen (DO) and the potential of hydrogen (pH) from the Xiaojinshan Monitoring Station in Qiandao Lake, Hangzhou, China. The experimental results show that the proposed model has superior prediction accuracy and stability when compared with other models, such as EMD-based models and other CEEMDAN-based models. The prediction accuracy of DO can reach 97.8% and pH is 96.1%. Therefore, the proposed model can provide technical support for river water quality protection and pollution prevention.


Assuntos
Modelos Teóricos , Qualidade da Água , Algoritmos , Oxigênio/química , Oxigênio/análise , Monitoramento Ambiental/métodos , Concentração de Íons de Hidrogênio , China
14.
J Med Syst ; 48(1): 10, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193948

RESUMO

Gene expression datasets offer a wide range of information about various biological processes. However, it is difficult to find the important genes among the high-dimensional biological data due to the existence of redundant and unimportant ones. Numerous Feature Selection (FS) techniques have been created to get beyond this obstacle. Improving the efficacy and precision of FS methodologies is crucial in order to identify significant genes amongst complicated complex biological data. In this work, we present a novel approach to gene selection called the Sine Cosine and Cuckoo Search Algorithm (SCACSA). This hybrid method is designed to work with well-known machine learning classifiers Support Vector Machine (SVM). Using a dataset on breast cancer, the hybrid gene selection algorithm's performance is carefully assessed and compared to other feature selection methods. To improve the quality of the feature set, we use minimum Redundancy Maximum Relevance (mRMR) as a filtering strategy in the first step. The hybrid SCACSA method is then used to enhance and optimize the gene selection procedure. Lastly, we classify the dataset according to the chosen genes by using the SVM classifier. Given the pivotal role gene selection plays in unraveling complex biological datasets, SCACSA stands out as an invaluable tool for the classification of cancer datasets. The findings help medical practitioners make well-informed decisions about cancer diagnosis and provide them with a valuable tool for navigating the complex world of gene expression data.


Assuntos
Algoritmos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Pessoal de Saúde , Aprendizado de Máquina , Máquina de Vetores de Suporte
15.
Entropy (Basel) ; 26(3)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38539698

RESUMO

Dissolved gas analysis (DGA) in transformer oil, which analyzes its gas content, is valuable for promptly detecting potential faults in oil-immersed transformers. Given the limitations of traditional transformer fault diagnostic methods, such as insufficient gas characteristic components and a high misjudgment rate for transformer faults, this study proposes a transformer fault diagnosis model based on multi-scale approximate entropy and optimized convolutional neural networks (CNNs). This study introduces an improved sparrow search algorithm (ISSA) for optimizing CNN parameters, establishing the ISSA-CNN transformer fault diagnosis model. The dissolved gas components in the transformer oil are analyzed, and the multi-scale approximate entropy of the gas content under different fault modes is calculated. The computed entropy values are then used as feature parameters for the ISSA-CNN model to derive diagnostic results. Experimental data analysis demonstrates that multi-scale approximate entropy effectively characterizes the dissolved gas components in the transformer oil, significantly improving the diagnostic efficiency. Comparative analysis with BPNN, ELM, and CNNs validates the effectiveness and superiority of the proposed ISSA-CNN diagnostic model across various evaluation metrics.

16.
Entropy (Basel) ; 26(5)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38785607

RESUMO

Precisely forecasting the price of crude oil is challenging due to its fundamental properties of nonlinearity, volatility, and stochasticity. This paper introduces a novel hybrid model, namely, the KV-MFSCBA-G model, within the decomposition-integration paradigm. It combines the mixed-frequency convolutional neural network-bidirectional long short-term memory network-attention mechanism (MFCBA) and generalized autoregressive conditional heteroskedasticity (GARCH) models. The MFCBA and GARCH models are employed to respectively forecast the low-frequency and high-frequency components decomposed through variational mode decomposition optimized by Kullback-Leibler divergence (KL-VMD). The classification of these components is performed using the fuzzy entropy (FE) algorithm. Therefore, this model can fully exploit the advantages of deep learning networks in fitting nonlinearities and traditional econometric models in capturing volatilities. Furthermore, the intelligent optimization algorithm and the low-frequency economic variable are introduced to improve forecasting performance. Specifically, the sparrow search algorithm (SSA) is employed to determine the optimal parameter combination of the MFCBA model, which is incorporated with monthly global economic conditions (GECON) data. The empirical findings of West Texas Intermediate (WTI) and Brent crude oil indicate that the proposed approach outperforms other models in evaluation indicators and statistical tests and has good robustness. This model can assist investors and market regulators in making decisions.

17.
BMC Bioinformatics ; 24(1): 384, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37817077

RESUMO

BACKGROUND: With the significant reduction in the cost of high-throughput sequencing technology, genomic selection technology has been rapidly developed in the field of plant breeding. Although numerous genomic selection methods have been proposed by researchers, the existing genomic selection methods still face the problem of poor prediction accuracy in practical applications. RESULTS: This paper proposes a genome prediction method MSXFGP based on a multi-strategy improved sparrow search algorithm (SSA) to optimize XGBoost parameters and feature selection. Firstly, logistic chaos mapping, elite learning, adaptive parameter adjustment, Levy flight, and an early stop strategy are incorporated into the SSA. This integration serves to enhance the global and local search capabilities of the algorithm, thereby improving its convergence accuracy and stability. Subsequently, the improved SSA is utilized to concurrently optimize XGBoost parameters and feature selection, leading to the establishment of a new genomic selection method, MSXFGP. Utilizing both the coefficient of determination R2 and the Pearson correlation coefficient as evaluation metrics, MSXFGP was evaluated against six existing genomic selection models across six datasets. The findings reveal that MSXFGP prediction accuracy is comparable or better than existing widely used genomic selection methods, and it exhibits better accuracy when R2 is utilized as an assessment metric. Additionally, this research provides a user-friendly Python utility designed to aid breeders in the effective application of this innovative method. MSXFGP is accessible at https://github.com/DIBreeding/MSXFGP . CONCLUSIONS: The experimental results show that the prediction accuracy of MSXFGP is comparable or better than existing genome selection methods, providing a new approach for plant genome selection.


Assuntos
Genoma de Planta , Genômica , Algoritmos , Benchmarking , Correlação de Dados
18.
BMC Bioinformatics ; 24(1): 479, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102551

RESUMO

Cancer prediction in the early stage is a topic of major interest in medicine since it allows accurate and efficient actions for successful medical treatments of cancer. Mostly cancer datasets contain various gene expression levels as features with less samples, so firstly there is a need to eliminate similar features to permit faster convergence rate of classification algorithms. These features (genes) enable us to identify cancer disease, choose the best prescription to prevent cancer and discover deviations amid different techniques. To resolve this problem, we proposed a hybrid novel technique CSSMO-based gene selection for cancer classification. First, we made alteration of the fitness of spider monkey optimization (SMO) with cuckoo search algorithm (CSA) algorithm viz., CSSMO for feature selection, which helps to combine the benefit of both metaheuristic algorithms to discover a subset of genes which helps to predict a cancer disease in early stage. Further, to enhance the accuracy of the CSSMO algorithm, we choose a cleaning process, minimum redundancy maximum relevance (mRMR) to lessen the gene expression of cancer datasets. Next, these subsets of genes are classified using deep learning (DL) to identify different groups or classes related to a particular cancer disease. Eight different benchmark microarray gene expression datasets of cancer have been utilized to analyze the performance of the proposed approach with different evaluation matrix such as recall, precision, F1-score, and confusion matrix. The proposed gene selection method with DL achieves much better classification accuracy than other existing DL and machine learning classification models with all large gene expression dataset of cancer.


Assuntos
Algoritmos , Neoplasias , Humanos , Análise em Microsséries , Neoplasias/genética , Técnicas Genéticas , Aprendizado de Máquina
19.
Proc Natl Acad Sci U S A ; 117(22): 12201-12207, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32424090

RESUMO

The exemplary search capabilities of flying insects have established them as one of the most diverse taxa on Earth. However, we still lack the fundamental ability to quantify, represent, and predict trajectories under natural contexts to understand search and its applications. For example, flying insects have evolved in complex multimodal three-dimensional (3D) environments, but we do not yet understand which features of the natural world are used to locate distant objects. Here, we independently and dynamically manipulate 3D objects, airflow fields, and odor plumes in virtual reality over large spatial and temporal scales. We demonstrate that flies make use of features such as foreground segmentation, perspective, motion parallax, and integration of multiple modalities to navigate to objects in a complex 3D landscape while in flight. We first show that tethered flying insects of multiple species navigate to virtual 3D objects. Using the apple fly Rhagoletis pomonella, we then measure their reactive distance to objects and show that these flies use perspective and local parallax cues to distinguish and navigate to virtual objects of different sizes and distances. We also show that apple flies can orient in the absence of optic flow by using only directional airflow cues, and require simultaneous odor and directional airflow input for plume following to a host volatile blend. The elucidation of these features unlocks the opportunity to quantify parameters underlying insect behavior such as reactive space, optimal foraging, and dispersal, as well as develop strategies for pest management, pollination, robotics, and search algorithms.


Assuntos
Quimiotaxia , Sinais (Psicologia) , Dípteros/fisiologia , Percepção de Distância/fisiologia , Voo Animal/fisiologia , Odorantes , Animais , Simulação por Computador , Fluxo Óptico , Orientação , Interface Usuário-Computador
20.
Sensors (Basel) ; 23(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36679503

RESUMO

OBJECTIVE: In this paper, we propose a Sine chaos mapping-based improved sparrow search algorithm (SSA) to optimize the BP neural network for trajectory prediction of inland river vessels because of the problems of poor accuracy and easy trapping in local optimum in BP neural networks. METHOD: First, a standard BP model is constructed based on the AIS data of ships in the Yangtze River section. A Sine-BP model is built using Sine chaos mapping to assign neural network weights and thresholds. Finally, a Sine-SSA-BP model is built using the sparrow search algorithm (SSA) to solve the optimal solutions of the neural network weights and thresholds. RESULT: The Sine-SSA-BP model effectively improves the initialized population of uniform distribution, and reduces the problem that population intelligence algorithms tend to be premature. CONCLUSIONS: The test results show that the Sine-SSA-BP neural network has higher prediction accuracy and better stability than conventional LSTM and SVM, especially in the prediction of corners, which is in good agreement with the real ship navigation trajectory.


Assuntos
Nascimento Prematuro , Navios , Feminino , Humanos , Algoritmos , Redes Neurais de Computação , Inteligência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA