RESUMO
The animal gut microbiota is strongly influenced by environmental factors that shape their temporal dynamics. Although diet is recognized as a major driver of gut microbiota variation, dietary patterns have seldom been linked to gut microbiota dynamics in wild animals. Here, we analysed the gut microbiota variation between dry and rainy seasons across four Sceloporus species (S. aeneus, S. bicanthalis, S. grammicus and S. spinosus) from central Mexico in light of temporal changes in diet composition. The lizard microbiota was dominated by Firmicutes (now Bacillota) and Bacteroidota, and the closely related species S. aeneus and S. bicanthalis shared a great number of core bacterial taxa. We report species-specific seasonal changes in gut microbiota diversity and composition: greater alpha diversity during the dry compared to the rainy season in S. bicanthalis, the opposite pattern in S. aeneus, and no seasonal differences in S. grammicus and S. spinosus. Our findings indicated a positive association between gut bacterial composition and dietary composition for S. bicanthalis and S. grammicus, but bacterial diversity did not increase linearly with dietary richness in any lizard species. In addition, seasonality affected bacterial composition, and microbial community similarity increased between S. aeneus and S. bicanthalis, as well as between S. grammicus and S. spinosus. Together, our results illustrate that seasonal variation and dietary composition play a role in shaping gut microbiota in lizard populations, but this is not a rule and other ecological factors influence microbiota variation.
Assuntos
Bactérias , Dieta , Microbioma Gastrointestinal , Lagartos , Estações do Ano , Animais , Microbioma Gastrointestinal/genética , Lagartos/microbiologia , México , Bactérias/classificação , Bactérias/genética , Artrópodes/microbiologia , RNA Ribossômico 16S/genética , BiodiversidadeRESUMO
Seasonal dietary shifts in animals are important strategies for ecological adaptation. An increasing number of studies have shown that seasonal dietary shifts can influence or even determine the composition of gut microbiota. The Turpan wonder gecko, Teratoscincus roborowskii, lives in extreme desert environments and has a flexible dietary shift to fruit-eating in warm seasons. However, the effect of such shifts on the gut microbiota is poorly understood. In this study, 16S rRNA sequencing and LC-MS metabolomics were used to examine changes in the gut microbiota composition and metabolic patterns of T. roborowskii. The results demonstrated that the gut microbes of T. roborowskii underwent significant seasonal changes, and the abundance of phylum level in autumn was significantly higher than spring, but meanwhile, the diversity was lower. At the family level, the abundance and diversity of the gut microbiota were both higher in autumn. Firmicutes, Bacteroidetes, and Proteobacteria were the dominant gut microbes of T. roborowskii. Verrucomicrobia and Proteobacteria exhibited dynamic ebb and flow patterns between spring and autumn. Metabolomic profiling also revealed differences mainly related to the formation of secondary bile acids. The pantothenate and CoA biosynthesis, and lysine degradation pathways identified by KEGG enrichment symbolize the exuberant metabolic capacity of T. roborowskii. Furthermore, strong correlations were detected between metabolite types and bacteria, and this correlation may be an important adaptation of T. roborowskii to cope with dietary shifts and improve energy acquisition. Our study provides a theoretical basis for exploring the adaptive evolution of the special frugivorous behavior of T. roborowskii, which is an important progress in the study of gut microbes in desert lizards.