Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Geophys Res Lett ; 49(10): e2022GL097885, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35859720

RESUMO

In order to explore temporal changes of predictability of El Niño Southern Oscillation (ENSO), a novel set of global biennial climate reforecasts for the historical period 1901-2010 has been generated using a modern initialized coupled forecasting system. We find distinct periods of enhanced long-range skill at the beginning and at the end of the twentieth century, and an extended multi-decadal epoch of reduced skill during the 1930s-1950s. Once the forecast skill extends beyond the first spring barrier, the predictability limit is much enhanced and our results provide support for the feasibility of skillful ENSO forecasts up to 18 months. Changes in the mean state, variability (amplitude), persistence, seasonal cycle and predictability suggest that multi-decadal variations in the dynamical characteristics of ENSO rather than the data coverage and quality of the observations have primarily driven the reported non-monotonic skill modulations.

2.
Ecol Appl ; 28(7): 1797-1807, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30024642

RESUMO

Ecological restoration has widely variable outcomes from successes to partial or complete failures, and there are diverse perspectives on the factors that influence the likelihood of success. However, not much is known about how these factors are perceived, and whether people's perceptions match realities. We surveyed 307 people involved in the restoration of native vegetation across Australia to identify their perceptions on the factors influencing the success of restoration projects. We found that weather (particularly drought and flooding) has realized impacts on the success of restoration projects, but is not perceived to be an important risk when planning new projects. This highlights the need for better recognition and management of weather risk in restoration and a potential role of seasonal forecasting. We used restoration case studies across Australia to assess the ability of seasonal forecasts provided by the Predictive Ocean Atmosphere Model for Australia, version M24 (POAMA-2) to detect unfavorable weather with sufficient skill and lead time to be useful for restoration projects. We found that rainfall and temperature variables in POAMA-2 predicted 88% of the weather issues encountered in restoration case studies apart from strong winds and cyclones. Of those restoration case studies with predictable weather issues, POAMA-2 had the forecast skill to predict the dominant or first-encountered issue in 67% of cases. We explored the challenges associated with uptake of forecast products through consultation with restoration practitioners and developed a prototype forecast product using a local case study. Integrating seasonal forecasting into decision making through (1) identifying risk management strategies during restoration planning, (2) accessing the forecast a month prior to revegetation activities, and (3) adapting decisions if extreme weather is forecasted, is expected to improve the establishment success of restoration.


Assuntos
Conservação dos Recursos Naturais/métodos , Tomada de Decisões , Tempo (Meteorologia) , Austrália , Previsões , Gestão de Riscos/métodos
3.
Clim Dyn ; 62(2): 1391-1406, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304695

RESUMO

The interannual variability of the Equatorial Eastern Indian Ocean (EEIO) is highly relevant for the climate anomalies on adjacent continents and affects global teleconnection patterns. Yet, this is an area where seasonal forecasting systems exhibit large errors. Here we investigate the reasons for these errors in the ECMWF seasonal forecasting system SEAS5 using tailored diagnostics and a series of numerical experiments. Results indicate that there are two fundamental and independent sources of forecast errors in the EEIO. The first one is of atmospheric nature and is largely related with too strong and stable easterly atmospheric circulation present in the equatorial Indian Ocean. This induces an easterly bias which leaves the coupled model predominantly in a state with a shallow thermocline and cold SSTs in the EEIO. The second error is of oceanic origin, associated with a too shallow thermocline, which enhances the SST errors arising from errors in the wind. Ocean initial conditions, which depend on both the quality of the assimilation and the ocean model, play an important role in this context. Nevertheless, it is found that the version of the ocean model used for the forecast can also play a non-negligible role at the seasonal time scales, by amplifying or damping the subsurface errors in the initial conditions. Errors in the EEIO are regime-dependent, having different causes in the warm (deep thermocline) regime with strong atmospheric convection and in the cold (shallow thermocline) regime. Errors also exhibit decadal variations, which challenges the calibration methods used in seasonal forecasts. Supplementary Information: The online version contains supplementary material available at 10.1007/s00382-023-06985-3.

4.
Heliyon ; 10(14): e34253, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39092265

RESUMO

In this study, an attempt has been made to investigate the possibility of a machine learning model, Artificial Neural Network (ANN) for seasonal prediction of the temperature of Dhaka city. Prior knowledge of temperature is essential, especially in tropical regions like Dhaka, as it aids in forecasting heatwaves and implementing effective preparedness schemes. While various machine learning models have been employed for the prediction of hot weather across the world, research specially focused on Bangladesh is limited. Additionally, the application of machine learning models needs to be curated to suit the particular weather features of any region. Therefore, this study approaches ANN method for prediction of the temperature of Dhaka exploring the underlying role of related weather variables. Using the daily data for the months of February to July collected from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data (0.25° × 0.25° global grid) for the years 2011-2020, this study focuses on finding the combination of weather variables in predicting temperatures. The densely populated city, Dhaka, has faced severe consequences due to extreme climate conditions in recent years, and this study will pave a new dimension for further research regarding the topic.

5.
J Hydrometeorol ; 25(5): 709-733, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38994349

RESUMO

Hydrological predictions at subseasonal-to-seasonal (S2S) time scales can support improved decision-making in climate-dependent sectors like agriculture and hydropower. Here, we present an S2S hydrological forecasting system (S2S-HFS) for western tropical South America (WTSA). The system uses the global NASA Goddard Earth Observing System S2S meteorological forecast system (GEOS-S2S) in combination with the generalized analog regression downscaling algorithm and the NASA Land Information System (LIS). In this implementation study, we evaluate system performance for 3-month hydrological forecasts for the austral autumn season (March-May) using ensemble hindcasts for 2002-17. Results indicate that the S2S-HFS generally offers skill in predictions of monthly precipitation up to 1-month lead, evapotranspiration up to 2 months lead, and soil moisture content up to 3 months lead. Ecoregions with better hindcast performance are located either in the coastal lowlands or in the Amazon lowland forest. We perform dedicated analysis to understand how two important teleconnections affecting the region are represented in the S2S-HFS: El Niño-Southern Oscillation (ENSO) and the Antarctic Oscillation (AAO). We find that forecast skill for all variables at 1-month lead is enhanced during the positive phase of ENSO and the negative phase of AAO. Overall, this study indicates that there is meaningful skill in the S2S-HFS for many ecoregions in WTSA, particularly for long memory variables such as soil moisture. The skill of the precipitation forecast, however, decays rapidly after forecast initialization, a phenomenon that is consistent with S2S meteorological forecasts over much of the world.

6.
Clim Serv ; 27: 100318, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35992963

RESUMO

We demonstrate levels of skill for forecasts of seasonal-mean wind speed and solar irradiance in Europe, using seasonal forecast systems available from the Copernicus Climate Change Service (C3S). While skill is patchy, there is potential for the development of climate services for the energy sector. Following previous studies, we show that, where there is skill, a simple linear regression-based method using the hindcast and forecast ensemble means provides a straightforward approach for producing calibrated probabilistic seasonal forecasts. This method extends naturally to using a larger-scale feature of the climate, such as the North Atlantic Oscillation, as the climate model predictor, and we show that this provides opportunities to improve the skill in some cases. We further demonstrate that, on seasonal-average and regional (e.g. national) average scales, wind and solar power generation are highly correlated with single climate variables (wind speed and irradiance). The detailed non-linear transformations from meteorological quantities to energy quantities, which are essential for detailed simulation of power system operations, are usually not necessary when forecasting gross wind or solar generation potential at seasonal-mean regional-mean scales. Together, our results demonstrate that where there is skill in seasonal forecasts of wind speed and irradiance, or a correlated larger-scale climate predictor, skilful forecasts of seasonal mean wind and solar power generation can be made based on the climate variable alone, without requiring complex transformations. This greatly simplifies the process of developing a useful seasonal climate service.

7.
Sci Total Environ ; 848: 157699, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35926634

RESUMO

Societal concerns about air quality in East Asia are still growing despite country-level efforts to reduce air pollution emissions. In coping with this growing concern, the government and the public demand a longer­lead forecast of air quality to ensure sufficient response time until society prepares for countermeasures such as a temporary reduction of specific emission sources. Here we propose a novel method that produces skillful seasonal forecasting of wintertime (December to February) PM10 concentration over South Korea. The method is based on the idea that climate condition and air quality have co-variability in the seasonal time scales and that the state-of-art seasonal prediction model will benefit air quality forecasting. More specifically, a linear regression model is constructed to link observed winter PM10 concentration and climate variables where the predicted climate variables were furnished from NCEP CFSv2 forecast initialized during autumn. In this case, climate variables were selected as predictors of the model because they are not only physically related to air quality but also 'predictable' in CFS hindcast. Through analysis of retrospective forecasts of 20 winters for the period 2001-2020, we found this model shows statistically significant skill for the seasonal forecast of wintertime PM10 concentration.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Estudos Retrospectivos , Estações do Ano
8.
Int J Climatol ; 42(11): 5714-5731, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36245684

RESUMO

Seasonal precipitation forecasting is highly challenging for the northwest fringes of Europe due to complex dynamical drivers. Hybrid dynamical-statistical approaches offer potential to improve forecast skill. Here, hindcasts of mean sea level pressure (MSLP) from two dynamical systems (GloSea5 and SEAS5) are used to derive two distinct sets of indices for forecasting winter (DJF) and summer (JJA) precipitation over lead-times of 1-4 months. These indices provide predictors of seasonal precipitation via a multiple linear regression model (MLR) and an artificial neural network (ANN) applied to four Irish rainfall regions and the Island of Ireland. Forecast skill for each model, lead time, and region was evaluated using the correlation coefficient (r) and mean absolute error (MAE), benchmarked against (a) climatology, (b) bias corrected precipitation hindcasts from both GloSea5 and SEAS5, and (c) a zero-order forecast based on rainfall persistence. The MLR and ANN models produced skilful precipitation forecasts with leads of up to 4 months. In all tests, our hybrid method based on MSLP indices outperformed the three benchmarks (i.e., climatology, bias corrected, and persistence). With correlation coefficients ranging between 0.38 and 0.81 in winter, and between 0.24 and 0.78 in summer, the ANN model outperformed MLR in both seasons in most regions and lead-times. Forecast skill for summer was comparable to that in winter and for some regions/lead times even superior. Our results also show that climatology and persistence performed better than direct use of bias corrected dynamical outputs in most regions and lead-times in terms of MAE. We conclude that the hybrid dynamical-statistical approach developed here-by leveraging useful information about MSLP from dynamical systems-enables more skilful seasonal precipitation forecasts for Ireland, and possibly other locations in western Europe, in both winter and summer.

9.
Water Res ; 201: 117286, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34102597

RESUMO

Seasonal climate forecasts produce probabilistic predictions of meteorological variables for subsequent months. This provides a potential resource to predict the influence of seasonal climate anomalies on surface water balance in catchments and hydro-thermodynamics in related water bodies (e.g., lakes or reservoirs). Obtaining seasonal forecasts for impact variables (e.g., discharge and water temperature) requires a link between seasonal climate forecasts and impact models simulating hydrology and lake hydrodynamics and thermal regimes. However, this link remains challenging for stakeholders and the water scientific community, mainly due to the probabilistic nature of these predictions. In this paper, we introduce a feasible, robust, and open-source workflow integrating seasonal climate forecasts with hydrologic and lake models to generate seasonal forecasts of discharge and water temperature profiles. The workflow has been designed to be applicable to any catchment and associated lake or reservoir, and is optimized in this study for four catchment-lake systems to help in their proactive management. We assessed the performance of the resulting seasonal forecasts of discharge and water temperature by comparing them with hydrologic and lake (pseudo)observations (reanalysis). Precisely, we analysed the historical performance using a data sample of past forecasts and reanalysis to obtain information about the skill (performance or quality) of the seasonal forecast system to predict particular events. We used the current seasonal climate forecast system (SEAS5) and reanalysis (ERA5) of the European Centre for Medium Range Weather Forecasts (ECMWF). We found that due to the limited predictability at seasonal time-scales over the locations of the four case studies (Europe and South of Australia), seasonal forecasts exhibited none to low performance (skill) for the atmospheric variables considered. Nevertheless, seasonal forecasts for discharge present some skill in all but one case study. Moreover, seasonal forecasts for water temperature had higher performance in natural lakes than in reservoirs, which means human water control is a relevant factor affecting predictability, and the performance increases with water depth in all four case studies. Further investigation into the skillful water temperature predictions should aim to identify the extent to which performance is a consequence of thermal inertia (i.e., lead-in conditions).


Assuntos
Lagos , Água , Austrália , Europa (Continente) , Previsões , Humanos , Estações do Ano , Temperatura
10.
Harmful Algae ; 108: 102100, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34588121

RESUMO

In recent decades, cultural eutrophication of coastal waters and inland lakes around the world has contributed to a rapid expansion of potentially toxic cyanobacteria, threatening aquatic and human systems. For many locations, a complex array of physical, chemical, and biological variables leads to significant inter-annual variability of cyanobacteria biomass, modulated by local and large-scale climate phenomena. Currently, however, minimal information regarding expected summertime cyanobacteria biomass conditions is available prior to the season, limiting proactive management and preparedness strategies for lake and beach safety. To address this, sub-seasonal (two-month) cyanobacteria biomass prediction models are developed, drawing on pre-season predictors including stream discharge, phosphorus loads, a floating algae index, and large-scale sea-surface temperature regions, with an application to Lake Mendota in Wisconsin. A two-phase statistical modeling approach is adopted to reflect identified asymmetric relationships between predictors (drivers of inter-annual variability) and cyanobacteria biomass levels. The model illustrates promising performance overall, with particular skill in predicting above normal cyanobacteria biomass conditions which are of primary importance to lake and beach managers.


Assuntos
Cianobactérias , Eutrofização , Lagos , Fósforo , Estações do Ano
11.
Sci Total Environ ; 755(Pt 1): 142604, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33092844

RESUMO

Understanding the influence of large-scale oceanic and atmospheric variability on rainfall over Ethiopia has huge potential to improve seasonal forecasting and inform crucial water management decisions at local levels, where data is available at appropriate scales for decision makers. In this study, drivers of Ethiopia's main rainy season, July-September (JAS), are investigated using correlation analysis with sea surface temperature (SST). The analysis showed local spatial variations in the drivers of JAS rainfall. Moreover, the analysis revealed strong correlation between March to May (MAM) SST and JAS rainfall in particular regions. In addition to the influence of SSTs, we highlighted one of the mechanisms explaining the regional pattern of SST influence on Ethiopian rainfall, the East African Low-Level Jet. Moreover, examining the occurrence of large-scale phenomena provided additional information, with very strong ENSO and positive IOD events associated with drier conditions in most part of Ethiopia. A sub-national analysis, focused at a scale relevant for water managers, on the Awash basin, highlighted two distinct climate zones with different relationships to SSTs. June was not included as part of the rainy season as in some areas June is a hot, dry month between rainy seasons and in others it can be used to update sub-seasonal forecasts with lead time of one month for JAS rainfall. This highlights the importance of understanding locally relevant climate systems and ensuing sub-seasonal to seasonal forecasts are done at the appropriate scale for water management in the complex topography and climatology of Ethiopia.

12.
Earths Future ; 9(5): e2020EF001625, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34222554

RESUMO

Improved understanding of how our coasts will evolve over a range of time scales (years-decades) is critical for effective and sustainable management of coastal infrastructure. A robust knowledge of the spatial, directional and temporal variability of the inshore wave climate is required to predict future coastal evolution and hence vulnerability. However, the variability of the inshore directional wave climate has received little attention, and an improved understanding could drive development of skillful seasonal or decadal forecasts of coastal response. We examine inshore wave climate at 63 locations throughout the United Kingdom and Ireland (1980-2017) and show that 73% are directionally bimodal. We find that winter-averaged expressions of six leading atmospheric indices are strongly correlated (r = 0.60-0.87) with both total and directional winter wave power (peak spectral wave direction) at all studied sites. Regional inshore wave climate classification through hierarchical cluster analysis and stepwise multi-linear regression of directional wave correlations with atmospheric indices defined four spatially coherent regions. We show that combinations of indices have significant skill in predicting directional wave climates (R 2  = 0.45-0.8; p < 0.05). We demonstrate for the first time the significant explanatory power of leading winter-averaged atmospheric indices for directional wave climates, and show that leading seasonal forecasts of the NAO skillfully predict wave climate in some regions.

13.
J Clim ; 34(2): 737-754, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34045793

RESUMO

Understanding the physical drivers of seasonal hydroclimatic variability and improving predictive skill remains a challenge with important socioeconomic and environmental implications for many regions around the world. Physics-based deterministic models show limited ability to predict precipitation as the lead time increases, due to imperfect representation of physical processes and incomplete knowledge of initial conditions. Similarly, statistical methods drawing upon established climate teleconnections have low prediction skill due to the complex nature of the climate system. Recently, promising data-driven approaches have been proposed, but they often suffer from overparameterization and overfitting due to the short observational record, and they often do not account for spatiotemporal dependencies among covariates (i.e., predictors such as sea surface temperatures). This study addresses these challenges via a predictive model based on a graph-guided regularizer that simultaneously promotes similarity of predictive weights for highly correlated covariates and enforces sparsity in the covariate domain. This approach both decreases the effective dimensionality of the problem and identifies the most predictive features without specifying them a priori. We use large ensemble simulations from a climate model to construct this regularizer, reducing the structural uncertainty in the estimation. We apply the learned model to predict winter precipitation in the southwestern United States using sea surface temperatures over the entire Pacific basin, and demonstrate its superiority compared to other regularization approaches and statistical models informed by known teleconnections. Our results highlight the potential to combine optimally the space-time structure of predictor variables learned from climate models with new graph-based regularizers to improve seasonal prediction.

14.
Q J R Meteorol Soc ; 143(703): 917-926, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31413423

RESUMO

Based on skill estimates from hindcasts made over the last couple of decades, recent studies have suggested that considerable success has been achieved in forecasting winter climate anomalies over the Euro-Atlantic area using current-generation dynamical forecast models. However, previous-generation models had shown that forecasts of winter climate anomalies in the 1960s and 1970s were less successful than forecasts of the 1980s and 1990s. Given that the more recent decades have been dominated by the North Atlantic Oscillation (NAO) in its positive phase, it is important to know whether the performance of current models would be similarly skilful when tested over periods of a predominantly negative NAO. To this end, a new ensemble of atmospheric seasonal hindcasts covering the period 1900-2009 has been created, providing a unique tool to explore many aspects of atmospheric seasonal climate prediction. In this study we focus on two of these: multi-decadal variability in predicting the winter NAO, and the potential value of the long seasonal hindcast datasets for the emerging science of probabilistic event attribution. The existence of relatively low skill levels during the period 1950s-1970s has been confirmed in the new dataset. The skill of the NAO forecasts is larger, however, in earlier and later periods. Whilst these inter-decadal differences in skill are, by themselves, only marginally statistically significant, the variations in skill strongly co-vary with statistics of the general circulation itself suggesting that such differences are indeed physically based. The mid-century period of low forecast skill coincides with a negative NAO phase but the relationship between the NAO phase/amplitude and forecast skill is more complex than linear. Finally, we show how seasonal forecast reliability can be of importance for increasing confidence in statements of causes of extreme weather and climate events, including effects of anthropogenic climate change.

15.
Ann N Y Acad Sci ; 1382(1): 8-20, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27428726

RESUMO

After several decades of intensive research, steady improvements in understanding and modeling the climate system have led to the development of the first generation of operational health early warning systems in the era of climate services. These schemes are based on collaborations across scientific disciplines, bringing together real-time climate and health data collection, state-of-the-art seasonal climate predictions, epidemiological impact models based on historical data, and an understanding of end user and stakeholder needs. In this review, we discuss the challenges and opportunities of this complex, multidisciplinary collaboration, with a focus on the factors limiting seasonal forecasting as a source of predictability for climate impact models.


Assuntos
Mudança Climática , Avaliação do Impacto na Saúde/métodos , Modelos Teóricos , Estações do Ano , Tempo (Meteorologia) , Previsões , Avaliação do Impacto na Saúde/tendências , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA