Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Physiol ; 601(22): 4937-4951, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35388915

RESUMO

Extracellular vesicles (EVs) can be released from most cells in the body and act as intercellular messengers transferring information in their cargo to affect cellular function. A growing body of evidence suggests that a subset of EVs, referred to here as 'small extracellular vesicles' (sEVs), can accelerate or slow the processes of ageing and age-related diseases dependent on their molecular cargo and cellular origin. Continued exploration of the vast complexity of the sEV cargo aims to further characterise these systemic vehicles that may be targeted to ameliorate age-related pathologies. Marked progress in the development of mass spectrometry-based technologies means that it is now possible to characterise a significant proportion of the proteome of sEVs (surface and cargo) via unbiased proteomics. This information is vital for identifying biomarkers and the development of sEV-based therapeutics in the context of ageing. Although exercise and physical activity are prominent features in maintaining health in advancing years, the mechanisms responsible are unclear. A potential mechanism by which plasma sEVs released during exercise could influence ageing and senescence is via the increased delivery of cargo proteins that function as antioxidant enzymes or inhibitors of senescence. These have been observed to increase in sEVs following acute and chronic exercise, as identified via independent interrogation of high coverage, publicly available proteomic datasets. Establishing tropism and exchange of functionally active proteins by these processes represents a promising line of enquiry in implicating sEVs as biologically relevant mediators of the ageing process.


Assuntos
Vesículas Extracelulares , Envelhecimento Saudável , Proteômica , Exercício Físico
2.
J Physiol ; 601(22): 5093-5106, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36855276

RESUMO

Small extracellular vesicles (sEVs) are released from all cell types and participate in the intercellular exchange of proteins, lipids, metabolites and nucleic acids. Proteomic, flow cytometry and nanoparticle tracking analyses suggest sEVs are released into circulation with exercise. However, interpretation of these data may be influenced by sources of bias introduced by different analytical approaches. Seven healthy participants carried out a high intensity intermittent training (HIIT) cycle protocol consisting of 4 × 30 s at a work-rate corresponding to 200% of individual max power (watts) interspersed by 4.5 min of active recovery. EDTA-treated blood was collected before and immediately after the final effort. Platelet-poor (PPP) and platelet-free (PFP) plasma was derived by one or two centrifugal spins at 2500 g, respectively (15 min, room temperature). Platelets were counted on an automated haemocytometer. Plasma samples were assessed with the Exoview R100 platform, which immobilises sEVs expressing common tetraspanin markers CD9, CD63, CD81 and CD41a on microfluidic chips and with the aid of fluorescence imaging, counts their abundance at a single sEV resolution, importantly, without a pre-isolation step. There was a lower number of platelets in the PFP than PPP, which was associated with a lower number of CD9, CD63 and CD41a positive sEVs. HIIT induced an increase in fluorescence counts in CD9, CD63 and CD81 positive sEVs in both PPP and PFP. These data support the concept that sEVs are released into circulation with exercise. Furthermore, platelet-free plasma is the preferred, representative analyte to study sEV dynamics and phenotype during exercise. KEY POINTS: Small extracellular vesicles (sEV) are nano-sized particles containing protein, metabolites, lipid and RNA that can be transferred from cell to cell. Previous findings implicate that sEVs are released into circulation with exhaustive, aerobic exercise, but since there is no gold standard method to isolate sEVs, these findings may be subject to bias introduced by different approaches. Here, we use a novel method to immobilise and image sEVs, at single-vesicle resolution, to show sEVs are released into circulation with high intensity intermittent exercise. Since platelet depletion of plasma results in a reduction in sEVs, platelet-free plasma is the preferred analyte to examine sEV dynamics and phenotype in the context of exercise.


Assuntos
Vesículas Extracelulares , Treinamento Intervalado de Alta Intensidade , Humanos , Proteômica , Exercício Físico , Voluntários Saudáveis
3.
Biol Reprod ; 109(4): 432-449, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37531262

RESUMO

In vitro maturation (IVM) is an alternative assisted reproductive technology with reduced hormone-related side effects and treatment burden compared to conventional IVF. Capacitation (CAPA)-IVM is a bi-phasic IVM system with improved clinical outcomes compared to standard monophasic IVM. Yet, CAPA-IVM efficiency compared to conventional IVF is still suboptimal in terms of producing utilizable blastocysts. Previously, we have shown that CAPA-IVM leads to a precocious increase in cumulus cell (CC) glycolytic activity during cytoplasmic maturation. In the current study, considering the fundamental importance of CCs for oocyte maturation and cumulus-oocyte complex (COC) microenvironment, we further analyzed the bioenergetic profiles of maturing CAPA-IVM COCs. Through a multi-step approach, we (i) explored mitochondrial function of the in vivo and CAPA-IVM matured COCs through real-time metabolic analysis with Seahorse analyzer, and to improve COC metabolism (ii) supplemented the culture media with lactate and/or super-GDF9 (an engineered form of growth differentiation factor 9) and (iii) reduced culture oxygen tension. Our results indicated that the pre-IVM step is delicate and prone to culture-related disruptions. Lactate and/or super-GDF9 supplementations failed to eliminate pre-IVM-induced stress on COC glucose metabolism and mitochondrial respiration. However, when performing pre-IVM culture under 5% oxygen tension, CAPA-IVM COCs showed similar bioenergetic profiles compared to in vivo matured counterparts. This is the first study providing real-time metabolic analysis of the COCs from a bi-phasic IVM system. The currently used analytical approach provides the quantitative measures and the rational basis to further improve IVM culture requirements.

4.
Clin Endocrinol (Oxf) ; 98(4): 567-577, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36372988

RESUMO

OBJECTIVE: Growth differentiation factor-9 (GDF9) and bone morphogenetic protein-15 (BMP15) are critical paracrine regulators of female fertility and are predominantly expressed by oocytes. However, it is unknown if serum concentrations reflect changes in ovarian function and/or reproductive endocrine disorders. This study aimed to determine if serum GDF9/BMP15 are associated with ovarian, pituitary, oestrogenic, androgenic and metabolic characteristics and the ovarian pathologies, polycystic ovarian morphology (PCOM) and polycystic ovary syndrome (PCOS). DESIGN: Women aged 21-45 years (n = 381) were included from a cross-sectional study at the National University Hospital, Singapore. PATIENTS: Participants were volunteers and patients with possible PCOS. MEASUREMENTS: Anthropometric measurements, transvaginal ultrasound scans and serum sampling were performed and a questionnairecompleted. Serum GDF9 and BMP15 concentrations were matched with menstrual cycle length, ovarian protein and steroid hormone production, pituitary hormone production and metabolic assessments in women with PCOM or PCOS and those with neither (control). RESULTS: Serum GDF9 and BMP15 were detectable in 40% and 41% of women, respectively and were positively correlated with each other (r = 0.08, p = 0.003). GDF9, but not BMP15, was positively correlated with ovarian volume (p = 0.02) and antral follicle count (AFC) (p = 0.004), but not with anti-Müllerian hormone (p = 0.05). However, serum GDF9 and BMP15 concentrations were not significantly different between control, PCOM and PCOS women, nor associated with androgenic or metabolic PCOS features. However, the relationship between GDF9 and AFC differed between control, PCOM and PCOS women (p = 0.02). CONCLUSIONS: Serum GDF9 and BMP15 concentrations somewhat reflect ovarian but not androgenic or metabolic characteristics of PCOS, with increased GDF9 reflecting high AFC as seen in PCOM/PCOS.


Assuntos
Síndrome do Ovário Policístico , Feminino , Humanos , Folículo Ovariano/patologia , Estudos Transversais , Oócitos , Hormônio Antimülleriano , Proteína Morfogenética Óssea 15/metabolismo , Fator 9 de Diferenciação de Crescimento/metabolismo
5.
Am J Obstet Gynecol ; 228(5): 561.e1-561.e17, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36706857

RESUMO

BACKGROUND: Systemic administration of soluble factors from bone marrow-derived stem cells combined with activated platelet-rich plasma (SC-PRP) restored ovarian function, mediated through paracrine signaling, in murine models of chemotherapy-induced ovarian damage and human tissue from poor responder patients. However, the effects against age-related infertility and the efficacy of local administration have not been evaluated yet. OBJECTIVE: This study aimed to assess whether a single intraovarian dose of stem cells combined with activated platelet-rich plasma can recover ovarian function, oocyte quality, and developmental competence in older mice. STUDY DESIGN: The effects of stem cells combined with activated platelet-rich plasma against age-related infertility were assessed following controlled ovarian stimulation in an aging murine model reproducing 3 physiological stages of women's reproductive life, namely young, advanced maternal age, and menopausal (n=12 animals per group). Female mice were randomized to receive a single intraovarian injection (10 µL/ovary) of either saline, activated platelet-rich plasma, or stem cells combined with activated platelet-rich plasma. Seven days later, the mice were stimulated, naturally mated, and sacrificed to harvest their ovaries for histologic assessment and molecular analysis and their oviducts to evaluate oocyte maturation and to assess early embryo development. RESULTS: A single intraovarian injection of stem cells combined with activated platelet-rich plasma promoted follicle activation and development in young, advanced maternal age, and old mice. Furthermore, stem cells combined with activated platelet-rich plasma rescued fertility in older mice by enhancing the quantity and quality of ovulated mature oocytes and supporting early embryo development to the blastocyst stage in all the evaluated ages. These fertility outcomes were positively associated with mitochondrial quality, treatment-increased mitochondrial DNA copy numbers, and reduced oxidative damage and apoptosis. Finally, the effects observed by histologic analysis were supported at the proteomic level. Functional proteomic analyses revealed molecular mechanisms involved in oocyte maturation and quality, mitochondrial function, and recovery of the ovarian stroma. CONCLUSION: Bone marrow-derived stem cells combined with activated platelet-rich plasma is a promising treatment with the potential to improve the reproductive outcomes of women with age-related infertility, exceeding the restorative effects of platelet-rich plasma alone. Although further research in human ovarian samples is still required, the autologous nature of stem cell factors collected by noninvasive mobilization, their combination with platelet-rich plasma, and the local administration route suggest that stem cells combined with activated platelet-rich plasma treatment could be a potentially effective and safe application for future clinical practice.


Assuntos
Infertilidade , Ovário , Animais , Feminino , Humanos , Camundongos , Modelos Animais de Doenças , Oócitos , Proteômica , Células-Tronco , Distribuição Aleatória
6.
J Assist Reprod Genet ; 40(8): 1961-1971, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37204638

RESUMO

PURPOSE: To assess the effects of the oocyte on mRNA abundance of FSHR, AMH and major genes of the maturation cascade (AREG, EREG, ADAM17, EGFR, PTGS2, TNFAIP6, PTX3, and HAS2) in bovine cumulus cells. METHODS: (1) Intact cumulus-oocyte complexes, (2) microsurgically oocytectomized cumulus-oolema complexes (OOX), and (3) OOX + denuded oocytes (OOX+DO) were subjected to in vitro maturation (IVM) stimulated with FSH for 22 h or with AREG for 4 and 22 h. After IVM, cumulus cells were separated and relative mRNA abundance was measured by RT-qPCR. RESULTS: After 22 h of FSH-stimulated IVM, oocytectomy increased FSHR mRNA levels (p=0.005) while decreasing those of AMH (p=0.0004). In parallel, oocytectomy increased mRNA abundance of AREG, EREG, ADAM17, PTGS2, TNFAIP6, and PTX3, while decreasing that of HAS2 (p<0.02). All these effects were abrogated in OOX+DO. Oocytectomy also reduced EGFR mRNA levels (p=0.009), which was not reverted in OOX+DO. The stimulatory effect of oocytectomy on AREG mRNA abundance (p=0.01) and its neutralization in OOX+DO was again observed after 4 h of AREG-stimulated IVM. After 22 h of AREG-stimulated IVM, oocytectomy and addition of DOs to OOX caused the same effects on gene expression observed after 22 h of FSH-stimulated IVM, except for ADAM17 (p<0.025). CONCLUSION: These findings suggest that oocyte-secreted factors inhibit FSH signaling and the expression of major genes of the maturation cascade in cumulus cells. These may be important actions of the oocyte favoring its communication with cumulus cells and preventing premature activation of the maturation cascade.


Assuntos
Células do Cúmulo , Fator de Crescimento Epidérmico , Feminino , Animais , Bovinos , Células do Cúmulo/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Ciclo-Oxigenase 2/metabolismo , Hormônio Foliculoestimulante/genética , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Oócitos/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/farmacologia , Técnicas de Maturação in Vitro de Oócitos
7.
Cereb Cortex ; 31(11): 5024-5041, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34023893

RESUMO

Oligodendrocytes form myelin for central nervous system axons and release factors which signal to neurons during myelination. Here, we ask how oligodendroglial factors influence hippocampal GABAergic neuron physiology. In mixed hippocampal cultures, GABAergic neurons fired action potentials (APs) of short duration and received high frequencies of excitatory synaptic events. In purified neuronal cultures without glial cells, GABAergic neuron excitability increased and the frequency of synaptic events decreased. These effects were largely reversed by adding oligodendrocyte conditioned medium (OCM). We compared the transcriptomic signature with the electrophysiological phenotype of single neurons in these three culture conditions. Genes expressed by single pyramidal or GABAergic neurons largely conformed to expected cell-type specific patterns. Multiple genes of GABAergic neurons were significantly downregulated by the transition from mixed cultures containing glial cells to purified neuronal cultures. Levels of these genes were restored by the addition of OCM to purified cultures. Clustering genes with similar changes in expression between different culture conditions revealed processes affected by oligodendroglial factors. Enriched genes are linked to roles in synapse assembly, AP generation, and transmembrane ion transport, including of zinc. These results provide new insight into the molecular targets by which oligodendrocytes influence neuron excitability and synaptic function.


Assuntos
Neurônios GABAérgicos , Transcriptoma , Células Cultivadas , Neurônios GABAérgicos/fisiologia , Hipocampo/metabolismo , Neuroglia/fisiologia , Oligodendroglia/fisiologia
8.
Curr Osteoporos Rep ; 20(5): 273-289, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35994202

RESUMO

PURPOSE OF REVIEW: The present review addresses most recently identified mechanisms implicated in metastasis-induced bone resorption and muscle-wasting syndrome, known as cachexia. RECENT FINDINGS: Metastatic disease in bone and soft tissues is often associated with skeletal muscle defects. Recent studies have identified a number of secreted molecules and extracellular vesicles that contribute to cancer cell growth and metastasis leading to bone destruction and muscle atrophy. In addition, alterations in muscle microenvironment including dysfunctions in hepatic and mitochondrial metabolism have been implicated in cancer-induced regeneration defect and muscle loss. Moreover, we review novel in vitro and animal models including promising new drug candidates for bone metastases and cancer cachexia. Preservation of bone health could be highly beneficial for maintaining muscle mass and function. Therefore, a better understanding of molecular pathways implicated in bone and muscle crosstalk in metastatic disease may provide new insights and identify new strategies to improve current anticancer therapeutics.


Assuntos
Neoplasias Ósseas , Doenças Musculares , Neoplasias , Animais , Neoplasias Ósseas/secundário , Caquexia/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Doenças Musculares/complicações , Neoplasias/complicações , Microambiente Tumoral
9.
Mol Hum Reprod ; 27(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-33905521

RESUMO

Secreted frizzled-related protein-4 (SFRP4) belongs to a family of soluble ovarian-expressed proteins that participate in female reproduction, particularly in rodents. In humans, SFRP4 is highly expressed in cumulus cells (CCs). However, the mechanisms that stimulate SFRP4 in CCs have not been examined. We hypothesise that oocyte-secreted factors such as growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are involved in the regulation of SFRP4. Human CCs were collected from patients undergoing fertility treatments and treated with GDF9 or BMP15 or their combination in the presence of FSH or vehicle. FSH treatment significantly decreased SFRP4 mRNA levels when compared with nontreated cells. However, SFRP4 mRNA levels were increased significantly by GDF9 plus BMP15 in a concentration-dependent manner in the presence or absence of FSH. The combination of GDF9 plus BMP15 also increased SFRP4 protein levels and decreased the activity of the ß-catenin/T cell factor-responsive promoter significantly. GDF9 plus BMP15 inhibited steroidogenic acute regulatory protein and LH/hCG receptor stimulation by FSH, while treatment with SFRP4 blocked the stimulatory effect of FSH on these genes. The evidence demonstrates that GDF9 and BMP15 act in coordination to stimulate SFRP4 expression and suggests that SFRP4 mediates the anti-luteinising effects of the oocyte in human CCs.


Assuntos
Proteína Morfogenética Óssea 15/farmacologia , Células do Cúmulo/efeitos dos fármacos , Fator 9 de Diferenciação de Crescimento/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Oócitos/fisiologia , Proteínas Proto-Oncogênicas/biossíntese , Proteína Morfogenética Óssea 15/administração & dosagem , Células Cultivadas , Células do Cúmulo/metabolismo , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Hormônio Foliculoestimulante/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Fator 9 de Diferenciação de Crescimento/administração & dosagem , Humanos , Oócitos/química , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Cultura Primária de Células , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores do LH/biossíntese , Receptores do LH/genética , Especificidade da Espécie
10.
Cell Tissue Res ; 383(3): 987-1002, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33367974

RESUMO

Extracellular signals play essential roles during embryonic patterning by providing positional information in a concentration-dependent manner, and many such signals, like Wnt, fibroblast growth factor (FGF), Hedgehog (Hh), and retinoic acid, act by being secreted into the extracellular space, thereby triggering receptor-mediated responses in other cells. Isthmin1 (ism1) is a secreted protein whose gene expression pattern coincides with that of early dorsal determinants, nodal ligand genes like sqt and cyc, and with fgf8 during various phases of zebrafish development. Ism1 functions in early embryonic patterning and development are poorly understood; however, it has recently been shown to interact with nodal pathway genes to control organ asymmetry in chicken. Here, we show that misexpression of ism1 deletion constructs disrupts embryonic patterning in zebrafish and exhibits genetic interactions with both Fgf and nodal signaling. Unlike Fgf and nodal pathway mutants, CRISPR/Cas9-engineered ism1 mutants did not show obvious developmental defects. Further, in vivo single molecule fluorescence correlation spectroscopy (FCCS) showed that Ism1 diffuses freely in the extra-cellular space, with a diffusion coefficient similar to that of Fgf8a; however, our measurements do not support direct molecular interactions between Ism1 and either nodal ligands or Fgf8a in the developing zebrafish embryo. Together, data from gain- and loss-of-function experiments suggest that zebrafish Ism1 plays a complex role in regulating extracellular signals during early embryonic development.


Assuntos
Animais Geneticamente Modificados/embriologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento
11.
Am J Obstet Gynecol ; 225(1): 65.e1-65.e14, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33539826

RESUMO

BACKGROUND: Ovarian senescence is a normal age-associated phenomenon, but increasingly younger women are affected by diminished ovarian reserves or premature ovarian insufficiency. There is an urgent need for developing therapies to improve ovarian function in these patients. In this context, previous studies suggest that stem cell-secreted factors could have regenerative properties in the ovaries. OBJECTIVE: This study aimed to test the ability of various human plasma sources, enriched in stem cell-secreted factors, and the mechanisms behind their regenerative properties, to repair ovarian damage and to promote follicular development. STUDY DESIGN: In the first phase, the effects of human plasma enriched in bone marrow stem cell soluble factors by granulocyte colony-stimulating factor mobilization, umbilical cord blood plasma, and their activated forms on ovarian niche, follicle development, and breeding performance were assessed in mouse models of chemotherapy-induced ovarian damage (n=7 per group). In addition, the proteomic profile of each plasma was analyzed to find putative proteins and mechanism involved in their regenerative properties in ovarian tissue. In the second phase, the most effective plasma treatment was validated in human ovarian cortex xenografted in immunodeficient mice (n=4 per group). RESULTS: Infusion of human plasma enriched bone marrow stem cell soluble factors by granulocyte colony-stimulating factor mobilization or of umbilical cord blood plasma-induced varying degrees of microvessel formation and cell proliferation and reduced apoptosis in ovarian tissue to rescue follicular development and fertility in mouse models of ovarian damage. Plasma activation enhanced these effects. Activated granulocyte colony-stimulating factor plasma was the most potent inducing ovarian rescue in both mice and human ovaries, and proteomic analysis indicated that its effects may be mediated by soluble factors related to cell cycle and apoptosis, gene expression, signal transduction, cell communication, response to stress, and DNA repair of double-strand breaks, the most common form of age-induced damage in oocytes. CONCLUSION: Our findings suggested that stem cell-secreted factors present in both granulocyte colony-stimulating factor-mobilized and umbilical cord blood plasma could be an effective treatment for increasing the reproductive outcomes in women with impaired ovarian function owing to several causes. The activated granulocyte colony-stimulating factor plasma, which is already enriched in both stem cell-secreted factors and platelet-enclosed growth factors, seems to be the most promising treatment because of its most potent restorative effects on the ovary together with the autologous source.


Assuntos
Fatores de Crescimento de Células Hematopoéticas/uso terapêutico , Folículo Ovariano/efeitos dos fármacos , Reserva Ovariana/efeitos dos fármacos , Ovário/efeitos dos fármacos , Insuficiência Ovariana Primária/tratamento farmacológico , Células-Tronco/metabolismo , Animais , Células da Medula Óssea , Modelos Animais de Doenças , Feminino , Sangue Fetal , Fator Estimulador de Colônias de Granulócitos/farmacologia , Fatores de Crescimento de Células Hematopoéticas/farmacologia , Xenoenxertos , Humanos , Recém-Nascido , Camundongos , Camundongos Endogâmicos NOD , Folículo Ovariano/crescimento & desenvolvimento , Ovário/transplante , Plasma/química , Fator de Células-Tronco/farmacologia
12.
Prostate ; 80(10): 764-776, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32356608

RESUMO

BACKGROUND: Aging is the most important risk factor for prostate cancer (PCa), but how age contributes to PCa is poorly understood. Aging is characterized by low-grade systemic inflammation (i.e., inflammaging) that is often attributed to the progressive activation of immune cells over time, which may play an important role in prostate carcinogenesis. Th17 response is elevated in aging humans and mice, but it remains unknown whether it is increased in prostate tissue or contributes to prostate carcinogenesis during aging. In this study, we aimed to determine the role of age-related Th17 response in PCa cell growth, migration, and invasion. METHODS: C57BL/6J (B6) mouse was used as an aging animal model and the prostate histopathology during aging was analyzed. Splenic CD4+ T cells were isolated from young (16-20 weeks old) and aged (96-104 weeks old) mice, and cultured in the presence of plate-bound anti-CD3/anti-CD28, with or without Th17 differentiation conditions. The cells were collected and used for subsequent flow cytometry or quantitative reverse transcription polymerase chain reaction. The supernatant was collected and used to treat PCa cell lines. The treated PCa cells were analyzed for cell viability, migration, invasion, and nuclear factor kappa B (NF-κB) signaling. RESULTS: Aged mice had enlarged prostate glands and increased morphological alterations, with not only increased inflammatory cell infiltration but also increased Th17 cytokines in prostate tissue, compared to young mice. Naïve CD4+ T cells from aged mice differentiated increased interleukin (IL)-17-expressing cells. CD4+ T cells from aged mice spleen had increased Th17 cells, Th17 cytokines and Th17/Treg ratio compared to young mice. Factors secreted from aged CD4+ T cells, especially from ex vivo differentiated Th17 cells, not only promoted PCa cell viability, migration, and invasion but also activated the NF-κB signaling in PCa cells compared to young mice. CONCLUSIONS: These results indicate that age-related CD4+ T cells, especially Th17 cells-secreted factors have the potential to contribute to prostate carcinogenesis. Our work could prompt further research using autochthonous PCa mouse models at different ages to elucidate the functional role of Th17 response in prostate carcinogenesis during aging.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Neoplasias da Próstata/imunologia , Células Th17/imunologia , Envelhecimento/imunologia , Animais , Linfócitos T CD4-Positivos/patologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Movimento Celular/imunologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , NF-kappa B/imunologia , Invasividade Neoplásica , Células PC-3 , Neoplasias da Próstata/patologia , Células Th17/patologia
13.
Mol Cell Biochem ; 471(1-2): 129-142, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32504365

RESUMO

Activation of epithelial-AR signaling is identified as the major cause of hyperproliferation of the cells during benign and malignant prostate conditions. However, the contribution of stromal-AR is also precarious due to its secretory actions that contribute to the progression of benign and malignant tumors. The present study was aimed to understand the influence of stromal-AR mediated actions on epithelial cells during BPH condition. The secretome (conditioned media-CM) was collected from AR agonist (testosterone-propionate-TP) and antagonist (Nilutamide-Nil) treated BPH patient-derived stromal cells and exposed to BPH epithelial cells. Epithelial cells exhibited increased cell proliferation with the treatment of CM derived from TP-treated stromal cells (TP-CM) but did not support the clonogenic growth of BPH epithelial cells. However, CM derived from Nil-treated stromal cells (Nil-CM) depicted delayed and aggressive BPH epithelial cell proliferation with increased clonogenicity of BPH epithelial cells. Further, decreased AR levels with increased cMyc transcripts and pAkt levels also validated the clonogenic transformation under the paracrine influence of inhibition of stromal-AR. Moreover, the CM of stromal-AR activation imparted positive regulation of basal/progenitor pool through LGR4, ß-Catenin, and ΔNP63α expression. Hence, the present study highlighted the restricted disease progression and retains the basal/progenitor state of BPH epithelial cells through the activation of stromal-AR. On the contrary, AR-independent aggressive BPH epithelial cell growth due to paracrine action of loss stromal-AR directs us to reform AR pertaining treatment regimes for better clinical outcomes.


Assuntos
Células Epiteliais/patologia , Imidazolidinas/farmacologia , Hiperplasia Prostática/patologia , Receptores Androgênicos/metabolismo , Células Estromais/metabolismo , Propionato de Testosterona/farmacologia , Antagonistas de Androgênios/farmacologia , Proliferação de Células , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Células Epiteliais/metabolismo , Humanos , Masculino , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo , Células Estromais/efeitos dos fármacos
14.
Proc Natl Acad Sci U S A ; 113(9): 2424-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26864200

RESUMO

The differentiation of the female gamete into a developmentally competent oocyte relies on the protected environment of the ovarian follicle. The oocyte plays a key role in establishing this microenvironment by releasing paracrine factors that control the functions of surrounding somatic cells. Growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) are secreted during follicle growth and play pivotal roles in this local regulation. The current view is that the function of these secreted factors declines in the periovulatory period when the oocyte reenters the meiotic cell cycle. Here, we provide evidence that oocyte reentry into meiosis is instead associated with a shift in the pattern of secretion with a new set of bioactive molecules synthesized before ovulation. Using interleukin 7 (IL7) as a prototypic secreted factor, we show that its secretion is dependent on activation of mRNA translation in synchrony with the cell cycle and that its translation is under the control of somatic cells. IL7 is part of a local feedback loop with the soma because it regulates cumulus cell replication. Similar conclusions are reached when IL7 secretion is measured in human follicular fluid during in vitro fertilization cycles. IL7 concentration in the follicular fluid correlates with the oocyte ability to reach the MII stage of maturation. These findings are consistent with the hypothesis that a new set of local factors is secreted by the oocyte during ovulation. These dynamic secretions are likely critical for promoting the final stages of maturation and oocyte developmental competence.


Assuntos
Células do Cúmulo/citologia , Meiose , Oócitos/citologia , Proliferação de Células/fisiologia , Feminino , Líquido Folicular/metabolismo , Regulação da Expressão Gênica , Humanos , Interleucina-17/genética , Interleucina-17/fisiologia , Biossíntese de Proteínas , RNA Mensageiro/genética
15.
J Assist Reprod Genet ; 36(5): 905-913, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30887159

RESUMO

PURPOSE: We first assessed regulation of FGF2 expression in cumulus cells by FSH and oocyte-secreted factors during in vitro maturation (IVM). Then, we tested the hypothesis that FGF2 regulates meiotic progression, cumulus expansion, and apoptosis in cumulus-oocyte complexes (COC) undergoing IVM. METHODS: In vitro maturation of bovine COC was utilized as a model to assess regulation of FGF2 expression by FSH and oocyte-secreted factors (via microsurgical removal of the oocyte), as well as effects of graded doses of FGF2 on meiotic progression, degree of cumulus expansion, dissociation of cumulus cells, and cumulus cells apoptosis. Expression of genes regulating functional endpoints altered by FGF2 treatment was assessed in cumulus cells by real-time PCR. Cultures were replicated 4-5 times and effects of treatments were tested by ANOVA. RESULTS: FGF2 mRNA expression was increased by FSH and oocyte-secreted factors during IVM. Addition of FGF2 to the IVM medium advanced meiosis resumption, decreased the ease with which cumulus cells were dissociated, and inhibited cumulus cells apoptosis. Decreased cumulus dissociation was accompanied by decreased expression of TNFAIP6. CONCLUSIONS: This is the first study showing that FGF2 expression is regulated by the oocyte in cumulus cells. Moreover, we report novel effects of FGF2 on cumulus cell survival and extracellular matrix (ECM) quality during IVM that may favor acquisition of developmental competence and suggest physiological roles during the final steps of COC differentiation.


Assuntos
Blastocisto/citologia , Diferenciação Celular , Células do Cúmulo/citologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/citologia , Animais , Apoptose , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Bovinos , Células do Cúmulo/efeitos dos fármacos , Células do Cúmulo/metabolismo , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Feminino , Meiose , Oócitos/efeitos dos fármacos , Oócitos/metabolismo
16.
Int J Mol Sci ; 20(9)2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31071959

RESUMO

Breast cancer is the most commonly diagnosed cancer in women worldwide, and >90% of breast cancer-related deaths are associated with metastasis. Breast cancer spreads preferentially to the lung, brain, bone and liver; termed organ tropism. Current treatment methods for metastatic breast cancer have been ineffective, compounded by the lack of early prognostic/predictive methods to determine which organs are most susceptible to developing metastases. A better understanding of the mechanisms that drive breast cancer metastasis is crucial for identifying novel biomarkers and therapeutic targets. Lung metastasis is of particular concern as it is associated with significant patient morbidity and a mortality rate of 60-70%. This review highlights the current understanding of breast cancer metastasis to the lung, including discussion of potential new treatment approaches for development.


Assuntos
Neoplasias da Mama/genética , Neoplasias Pulmonares/genética , Microambiente Tumoral/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Metástase Neoplásica
17.
Reprod Domest Anim ; 53(6): 1523-1529, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30058188

RESUMO

The objectives of this study were to investigate the effect of buffalo oocyte-secreted factors (OSFs) on cumulus cells (CCs) functions, apoptosis and cGMP generation, and whether the direct contact between oocyte and CCs is essential for oocyte-mediated regulation of CCs functions. Buffalo CCs were cultured during IVM within three groups: (a) intact cumulus-oocyte complexes (COCs), (b) CCs cocultured with denuded oocytes (DOs) (CCs + DOs) and (c) CCs monolayer cultured alone (CCsM). After 24 hr of IVM, CCs were harvested for evaluation of the relative mRNA abundance of the genes encoding gap junction (GJA1), glycolysis (PFKP and LDHA), apoptosis (CASPASE-3 and BCL-2) and steroidogenesis (ER-ß and PGR) by QRT-PCR, and CASPASE-3 proteins, using western blot. Intracellular cGMP content was also assessed by ELISA. Results showed that the relative abundance of LDHA, PFKP and BCL-2 significantly increased (p < 0.05) in COCs, whereas GJA1 and CASPASE-3 exhibited lower expression (p < 0.05) compared to CCs + DOs and CCsM groups. However, the expression levels of CASPASE-3, both mRNA and protein, were significantly (p < 0.05) downregulated in CCs + DOs compared to CCsM. There was no significant difference in the expression level of PGR and ER-ß between the groups. The intracellular content of cGMP was notably (p < 0.05) higher in COCs compared to CCs + DOs and CCsM groups. In conclusion, this study demonstrated, for the first time, that buffalo OSFs protect CCs against apoptosis and stimulate their cGMP production; however, the regulation of cumulus glycolysis and gap junction is confined to those in close contact with the oocyte. Neither OSFs from COCs nor those from DOs have any effect on CCs steroidogenesis.


Assuntos
Búfalos/fisiologia , Células do Cúmulo/fisiologia , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oócitos/fisiologia , Animais , Apoptose , Técnicas de Cultura de Células/veterinária , Técnicas de Cocultura/veterinária , Células do Cúmulo/citologia , Células do Cúmulo/microbiologia , GMP Cíclico/metabolismo , Feminino , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Perfilação da Expressão Gênica , Glicólise/genética , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/citologia , RNA Mensageiro , Esteroides/metabolismo
18.
Biol Reprod ; 96(6): 1167-1180, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28486664

RESUMO

It is known that oocytes and cumulus cells (CCs) are more resistant to apoptosis than other compartments of the antral follicle. However, although oocyte-secreted factors (OSFs) have been found to be involved in suppressing bovine CC apoptosis, little is known about the intracellular mechanisms by which OSFs render CCs resistant to apoptosis. Here, we show that coculture with mouse or pig cumulus-denuded oocytes, culture with recombinant mouse growth differentiation factor-9 (GDF-9), or culture in pig oocyte-conditioned medium (POCM) significantly inhibited CC apoptosis of mouse oocytectomized cumulus oophorus complexes (OOXs). The POCM contained both GDF-9 and bone morphogenetic protein-15, and their levels remained constant during culture of OOXs. The level of microRNA-21 (miR-21) was significantly lower in OOXs than in COCs after culture in a simplified α-MEM medium, but increased significantly when OOXs were cultured with GDF-9 or in POCM. The level of miR-21 in OSF-treated CCs was correlated with that of Dicer1 but not that of Drosha mRNA. Inhibiting activin receptor-like kinase 5 or SMAD3 completely abolished the beneficial effects of GDF-9 or POCM on CC apoptosis and miR-21 levels. Up- and downregulating miR-21 expression significantly reduced and increased CC apoptosis, respectively. The OSF-upregulated miR-21 expression suppressed CC apoptosis with activation of the PI3K/Akt signaling. In conclusion, miR-21 plays a pivotal role in the OSF suppression of CC apoptosis. OSFs upregulated miR-21 expression through the TGF-ß superfamily signaling, which worked through DICER. MicroRNA-21 prevented apoptosis via the PI3K/Akt signaling.


Assuntos
Apoptose/fisiologia , Células do Cúmulo/fisiologia , MicroRNAs/metabolismo , Proteínas da Gravidez/metabolismo , Animais , Proteína Morfogenética Óssea 15/química , Proteína Morfogenética Óssea 15/metabolismo , Proteína Morfogenética Óssea 15/farmacologia , Caspase 3/genética , Caspase 3/metabolismo , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Fator 9 de Diferenciação de Crescimento/química , Fator 9 de Diferenciação de Crescimento/metabolismo , Fator 9 de Diferenciação de Crescimento/farmacologia , Camundongos , MicroRNAs/genética , Oócitos , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Suínos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
19.
Cryobiology ; 75: 106-116, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28093199

RESUMO

The aim of the study was to identify a cryo-device that would be best suited for the vitrification of buffalo immature cumulus-oocyte complexes (COCs) as judged by viability and meiotic competence of the vitrified-warmed oocytes and their development ability following in vitro fertilization (IVF). The expression of oocyte secreting factors and their receptors (GDF9, BMP15, BMPR2, TGFBR1) and apoptosis related genes (BCL2, BAX, P53, C-MYC) were compared in vitrified-warmed oocytes after in vitro maturation. COCs from the ovaries of slaughtered buffaloes were vitrified in a combination of dimethyl sulfoxide, ethylene glycol, and sucrose using either a conventional straw (CS), open pulled straw (OPS), cryoloop (CL), hemistraw (HS) or cryotop (CT). The fresh COCs were exposed to vitrification and warming solutions as in other vitrification methods without plunging in to liquid nitrogen (EC). The viability of vitrified-warmed COCs, 2 h post warming in HS and CT was similar to fresh and EC groups but significantly higher than CS and OPS methods. The proportions of oocytes with first polar body after 24 h in vitro maturation were significantly higher in HS and CT methods than in CS, OPS and CL methods. The development ability of these vitrified-warmed oocytes to blastocyst stage following IVF in all vitrified groups was significantly lower than control and EC groups. Among the vitrified groups, the blastocyst rate in HS, CT and CL groups was significantly higher than in OPS and CS groups. It was also observed that the expression levels of GDF9, BMP15, BMPR2, TGFBR1, BCL2, BAX, P53 and C-MYC genes in vitrified-warmed COCs in CT, HS and CL groups were similar to control. The results indicated that HS, CT and CL are more suitable cryo-devices for vitrification of buffalo immature oocytes.


Assuntos
Criopreservação/instrumentação , Criopreservação/métodos , Crioprotetores/farmacologia , Células do Cúmulo/efeitos dos fármacos , Animais , Búfalos , Dimetil Sulfóxido/farmacologia , Etilenoglicol/farmacologia , Feminino , Oócitos/efeitos dos fármacos , Vitrificação
20.
Zygote ; 25(3): 313-320, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28592334

RESUMO

Oocyte-secreted factors (OSFs) play an important role in the acquisition of oocyte developmental competence through bidirectional cross-talk between oocyte and cumulus cells via gap junctions. Thus, the present study was designed to investigate the effect of two OSFs, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), on the developmental competence of buffalo oocytes derived from two different follicle sizes. Cumulus-oocyte complexes (COCs) from large follicles (LF, >6 mm) or small follicles (SF, 0.05) between DOs and combination groups. Relative mRNA analysis revealed significantly higher (P > 0.05) expression of the cumulus cell marker genes EGFR, HAS2, and CD44 in LF-derived than SF-derived oocyte; the expression of these markers was significantly higher (P > 0.05) in DOs and combination groups, irrespective of the follicle size. These results suggested that LF-derived oocytes have a higher developmental competence than SF-derived oocytes and that supplementation of GDF9 and BMP15 modulates the developmental competence of buffalo oocytes by increasing the relative abundance of cumulus-enabling factors and thereby increasing cleavage and the quality of blastocyst production.


Assuntos
Proteína Morfogenética Óssea 15/farmacologia , Regulação da Expressão Gênica , Fator 9 de Diferenciação de Crescimento/farmacologia , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Animais , Biomarcadores , Blastocisto/fisiologia , Proteína Morfogenética Óssea 15/metabolismo , Búfalos , Receptores ErbB/genética , Feminino , Fertilização in vitro , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Fator 9 de Diferenciação de Crescimento/metabolismo , Receptores de Hialuronatos/genética , Hialuronan Sintases/genética , Técnicas de Maturação in Vitro de Oócitos/métodos , Masculino , Oócitos/efeitos dos fármacos , Folículo Ovariano/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA