Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
BMC Plant Biol ; 24(1): 606, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926658

RESUMO

Early season carrot (Daucus carota) production is being practiced in Punjab, Pakistan to meet the market demand but high temperature hampers the seed germination and seedling establishment which cause marked yield reduction. Seed priming with potassium nitrate breaks the seed dormancy and improves the seed germination and seedling growth potential but effects vary among the species and ecological conditions. The mechanism of KNO3 priming in high temperature stress tolerance is poorly understood yet. Thus, present study aimed to evaluate high temperature stress tolerance potential of carrot seeds primed with potassium nitrate and impacts on growth, physiological, and antioxidant defense systems. Carrot seeds of a local cultivar (T-29) were primed with various concentration of KNO3 (T0: unprimed (negative control), T1: hydroprimed (positive control), T2: 50 mM, T3:100mM, T4: 150 mM, T5: 200 mM, T6: 250 mM and T7: 300 mM) for 12 h each in darkness at 20 ± 2℃. Seed priming with 50 mM of KNO3 significantly enhanced the seed germination (36%), seedling growth (28%) with maximum seedling vigor (55%) and also exhibited 16.75% more carrot root biomass under high temperature stress as compared to respective control. Moreover, enzymatic activities including peroxidase, catalase, superoxidase dismutase, total phenolic contents, total antioxidants contents and physiological responses of plants were also improved in response to seed priming under high temperature stress. By increasing the level of KNO3, seed germination, growth and root biomass were reduced. These findings suggest that seed priming with 50 mM of KNO3 can be an effective strategy to improve germination, growth and yield of carrot cultivar (T-29) under high temperature stress in early cropping. This study also proposes that KNO3 may induces the stress memory by heritable modulations in chromosomal structure and methylation and acetylation of histones that may upregulate the hormonal and antioxidant activities to enhance the stress tolerance in plants.


Assuntos
Antioxidantes , Daucus carota , Germinação , Nitratos , Compostos de Potássio , Plântula , Sementes , Antioxidantes/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/fisiologia , Nitratos/metabolismo , Nitratos/farmacologia , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Daucus carota/crescimento & desenvolvimento , Daucus carota/efeitos dos fármacos , Daucus carota/fisiologia , Compostos de Potássio/farmacologia , Germinação/efeitos dos fármacos , Temperatura Alta
2.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34697238

RESUMO

Pest management practices in modern industrial agriculture have increasingly relied on insurance-based insecticides such as seed treatments that are poorly correlated with pest density or crop damage. This approach, combined with high invertebrate toxicity for newer products like neonicotinoids, makes it challenging to conserve beneficial insects and the services that they provide. We used a 4-y experiment using commercial-scale fields replicated across multiple sites in the midwestern United States to evaluate the consequences of adopting integrated pest management (IPM) using pest thresholds compared with standard conventional management (CM). To do so, we employed a systems approach that integrated coproduction of a regionally dominant row crop (corn) with a pollinator-dependent specialty crop (watermelon). Pest populations, pollination rates, crop yields, and system profitability were measured. Despite higher pest densities and/or damage in both crops, IPM-managed pests rarely reached economic thresholds, resulting in 95% lower insecticide use (97 versus 4 treatments in CM and IPM, respectively, across all sites, crops, and years). In IPM corn, the absence of a neonicotinoid seed treatment had no impact on yields, whereas IPM watermelon experienced a 129% increase in flower visitation rate by pollinators, resulting in 26% higher yields. The pollinator-enhancement effect under IPM management was mediated entirely by wild bees; foraging by managed honey bees was unaffected by treatments and, overall, did not correlate with crop yield. This proof-of-concept experiment mimicking on-farm practices illustrates that cropping systems in major agricultural commodities can be redesigned via IPM to exploit ecosystem services without compromising, and in some cases increasing, yields.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais , Controle de Insetos/métodos , Insetos , Inseticidas , Polinização , Agricultura/economia , Animais , Biomassa , Citrullus , Controle de Insetos/economia , Resíduos de Praguicidas/análise , Pólen/química , Zea mays
3.
Plant Dis ; 108(7): 2046-2052, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38345543

RESUMO

Alternaria brassicicola is part of a complex of Alternaria species that causes leaf blight and head rot in brassica crops such as broccoli, kale, cabbage, cauliflower, and collards. Seed can serve as a potential source of inoculum for the transmission of A. brassicicola in broccoli as demonstrated earlier; however, seed-to-seedling transmission of pathogen was never characterized empirically. So, the objectives of this study were to (i) re-evaluate the effect of artificial seed infestation on seed germination and seed-to-seedling transmission of A. brassicicola in broccoli; (ii) determine the effect of A. brassicicola-seed inoculum levels on seed-to-seedling transmission; (iii) evaluate if variations in A. brassicicola aggressiveness affect A. brassicicola seed-to-seedling transmission; and (iv) evaluate seed treatments that can reduce seed-to-seedling transmission of A. brassicicola in broccoli. Artificially infested seedlots were generated by inoculating broccoli seeds with a spore suspension of 1 × 105 conidia/ml of A. brassicicola using the vacuum infiltration method. Inoculated (n = 10 seedlots; 300 seeds/seedlot) or control seedlots in three replicates were planted on two layers of sterile blotter paper saturated with sterile water in transparent plastic boxes and incubated at 20°C and >90% relative humidity (RH) under continuous fluorescent light. Percent seed germination and percent seed-to-seedling transmission were recorded every other day for 21 days. Percent seed germination was significantly affected with artificial pathogen inoculation. One hundred percent of the seedlots transmitted the pathogen to broccoli seedlings, and seed-to-seedling percentages of the seedlots varied considerably. A strong linear and significant relationship between A. brassicicola inoculum level and seed-to-seedling transmission (%) within each seedlot was observed. Interestingly, variations in aggressiveness of A. brassicicola isolates did not affect seed-to-seedling transmission, as 100% of the seedlots were able to transmit the pathogen. Seed treatment with Miravis (a.i. pydiflumetofen 18.3%) significantly increased seed germination and reduced seed-to-seedling transmission percentages in A. brassicicola-inoculated seedlots. These results indicate that artificial seed inoculation with A. brassicicola can result in consistent seed-to-seedling transmission with significant impact on seed germination. Seed inoculum density of ≥104 conidia/ml is necessary for reliable transmission of A. brassicicola. Further seed-to-seedling transmission is not dependent on aggressiveness of A. brassicicola isolates and seed treatment with Miravis can significantly reduce pathogen transmission in broccoli seedings. Overall, this study provides detailed characterization of seed-to-seedling transmission of A. brassicicola in broccoli that can be further used to determine inoculum threshold, which has potential applications in seed-health testing and sample size determination. Furthermore, we also provide options for effective seed treatments that can significantly reduce A. brassicicola seed-to-seedling transmission and may potentially aid in managing seedborne fungal infection.


Assuntos
Alternaria , Brassica , Doenças das Plantas , Plântula , Sementes , Alternaria/fisiologia , Brassica/microbiologia , Sementes/microbiologia , Doenças das Plantas/microbiologia , Plântula/microbiologia , Germinação
4.
Plant Dis ; 108(6): 1729-1739, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38199961

RESUMO

As soybean (Glycine max) production continues to expand in the United States and Canada, so do pathogens and pests that directly threaten soybean yield potential and economic returns for farmers. One such pathogen is the soybean cyst nematode (SCN; Heterodera glycines). SCN has traditionally been managed using SCN-resistant cultivars and rotation with nonhost crops, but the interaction of SCN with sudden death syndrome (SDS; caused by Fusarium virguliforme) in the field makes management more difficult. Nematode-protectant seed treatments have become options for SCN and SDS management. The objectives of this study were to evaluate nematode-protectant seed treatments for their effects on (i) early and full season SCN reproduction, (ii) foliar symptoms and root-rot caused by SDS, and (iii) soybean yield across environments accounting for the above factors. Using a standard protocol, field trials were implemented in 13 states and one Canadian province from 2019 to 2021 constituting 51 site-years. Six nematode-protectant seed treatment products were compared with a fungicide + insecticide base treatment and a nontreated check. Initial (at soybean planting) and final (at soybean harvest) SCN egg populations were enumerated, and SCN females were extracted from roots and counted at 30 to 35 days postplanting. Foliar disease index (FDX) and root rot caused by the SDS pathogen were evaluated, and yield data were collected for each plot. No seed treatment offered significant nematode control versus the nontreated check for in-season and full-season nematode response, no matter the initial SCN population or FDX level. Of all treatments, ILEVO (fluopyram) and Saltro (pydiflumetofen) provided more consistent increases in yield over the nontreated check in a broader range of SCN environments, even when FDX level was high.


Assuntos
Glycine max , Doenças das Plantas , Sementes , Tylenchoidea , Glycine max/parasitologia , Animais , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/fisiologia , Sementes/microbiologia , Sementes/parasitologia , Fusarium/fisiologia , Fusarium/efeitos dos fármacos , Canadá
5.
Plant Dis ; 108(6): 1602-1611, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38127633

RESUMO

Sudden death syndrome (SDS), caused by Fusarium virguliforme, is an important yield-limiting disease of soybean (Glycine max). From 1996 to 2022, cumulative yield losses attributed to SDS in North America totaled over 25 million metric tons, which was valued at over US $7.8 billion. Seed treatments are widely used to manage SDS by reducing early season soybean root infection by F. virguliforme. Fluopyram (succinate dehydrogenase inhibitor [SDHI] - FRAC 7), a fungicide seed treatment for SDS management, has been registered for use on soybean in the United States since 2014. A baseline sensitivity study conducted in 2014 evaluated 130 F. virguliforme isolates collected from five states to fluopyram in a mycelial growth inhibition assay and reported a mean EC50 of 3.35 mg/liter. This baseline study provided the foundation for the objectives of this research: to detect any statistically significant change in fluopyram sensitivity over time and geographical regions within the United States and to investigate sensitivity to the fungicide pydiflumetofen. We repeated fluopyram sensitivity testing on a panel of 80 historical F. virguliforme isolates collected from 2006 to 2013 (76 of which were used in the baseline study) and conducted testing on 123 contemporary isolates collected from 2016 to 2022 from 11 states. This study estimated a mean absolute EC50 of 3.95 mg/liter in isolates collected from 2006 to 2013 and a mean absolute EC50 of 4.19 mg/liter in those collected in 2016 to 2022. There was no significant change in fluopyram sensitivity (P = 0.1) identified between the historical and contemporary isolates. A subset of 23 isolates, tested against pydiflumetofen under the same conditions, estimated an absolute mean EC50 of 0.11 mg/liter. Moderate correlation was detected between fluopyram and pydiflumetofen sensitivity estimates (R = 0.53; P < 0.001). These findings enable future fluopyram and pydiflumetofen resistance monitoring and inform current soybean SDS management strategies in a regional and national context.


Assuntos
Fungicidas Industriais , Fusarium , Glycine max , Doenças das Plantas , Fusarium/efeitos dos fármacos , Fusarium/isolamento & purificação , Fungicidas Industriais/farmacologia , Glycine max/microbiologia , Estados Unidos , Doenças das Plantas/microbiologia , Compostos de Anilina/farmacologia , Farmacorresistência Fúngica , Benzamidas , Piridinas
6.
Plant Dis ; 105(5): 1281-1288, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32931390

RESUMO

Soybean seedlings are vulnerable to different oomycete pathogens. Seed treatments containing the two antioomycete (oomicide) chemicals, metalaxyl-M (mefenoxam) and ethaboxam, are used for protection against oomycete pathogens. This study aimed to evaluate the influence of these two oomicides on isolation probability of oomycetes from soybean taproot or lateral root sections. Soybean plants were collected between the first and third trifoliate growth stages from five Midwest field locations in 2016 and four of the same fields in 2017. Oomycetes were isolated from taproot and lateral root. In 2016, 369 isolation attempts were completed, resulting in 121 isolates from the taproot and 154 isolates from the lateral root. In 2017, 468 isolation attempts were completed, with 44 isolates from the taproot and 120 isolates from the lateral roots. In three of nine site-years, the probability of isolating an oomycete from a taproot or lateral root section was significantly different. Seed treatments containing a mixture of ethaboxam and metalaxyl significantly reduced the probability of oomycete isolation from lateral roots in Illinois in 2016 and 2017, but not in other locations, which may have been related to the heavy soil type (clay loam). Among the 439 isolates collected from the two years sampled, 24 oomycete species were identified, and community compositions differed depending on location and year. The five most abundant species were Pythium sylvaticum (28.9%), P. heterothallicum (14.3%), P. ultimum var. ultimum (11.8%), P. attrantheridium (7.9%), and P. irregulare (6.6%), which accounted for 61.7% of the isolates collected. Oomicide sensitivity to ethaboxam and mefenoxam was assessed for >300 isolates. There were large differences in ethaboxam sensitivity among oomycete species, with effective concentrations to reduce optical density at 600 nm by 50% compared with the nonamended control (EC50 values) ranging from <0.01 to >100 µg/ml and a median of 0.65 µg/ml. Isolates with insensitivity to ethaboxam (>12 µg/ml) belonged to the species P. torulosum and P. rostratifingens but were sensitive to mefenoxam. Oomicide sensitivity to mefenoxam ranged from <0.01 to 0.62 µg/ml with a median of 0.03 µg/ml. The mean EC50 value of the five most abundant species to ethaboxam ranged from 0.35 to 0.97 µg/ml of ethaboxam and from 0.02 to 0.04 µg/ml of mefenoxam. No shift in sensitivity to mefenoxam or ethaboxam was observed as a result of soybean seed treatment or year relative to the nontreated seed controls. In summary, this study contributed to the understanding of the composition of oomycete populations from different soybean root tissues, locations, years, and seed treatments. Finally, seed treatments containing mefenoxam or metalaxyl plus ethaboxam can be effective in reducing the probability of oomycete isolation from soybean roots.


Assuntos
Glycine max , Pythium , Doenças das Plantas , Plântula , Sementes
7.
Plant Dis ; 104(5): 1421-1432, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32191161

RESUMO

Phytophthora, Phytopythium, and Pythium species that cause early-season seed decay and pre-emergence and post-emergence damping off of soybean are most commonly managed with seed treatments. The phenylamide fungicides metalaxyl and mefenoxam, and ethaboxam are effective toward some but not all species. The primary objective of this study was to evaluate the efficacy of ethaboxam in fungicide mixtures and compare those with other fungicides as seed treatments to protect soybean against Pythium, Phytopythium, and Phytophthora species in both high-disease field environments and laboratory seed plate assays. The second objective was to evaluate these seed treatment mixtures on cultivars that have varying levels and combinations of resistance to these soilborne pathogens. Five of eight environments received adequate precipitation in the 14 days after planting for high levels of seedling disease development and treatment evaluations. Three environments had significantly greater stands, and three had significantly greater yield when ethaboxam was used in the seed treatment mixture compared with treatments containing metalaxyl or mefenoxam alone. Three fungicide formulations significantly reduced disease severity compared with nontreated in the seed plate assay for 17 species. However, the combination of ethaboxam plus metalaxyl in a mixture was more effective than either fungicide alone against some Pythium and Phytopythium species. Overall, our results indicate that the addition of ethaboxam to a fungicide seed treatment is effective in reducing seed rot caused by these pathogens commonly isolated from soybean in Ohio but that these effects can be masked when cultivars with resistance are planted.


Assuntos
Phytophthora , Pythium , Ohio , Doenças das Plantas , Sementes , Glycine max , Tiazóis , Tiofenos
8.
Ecotoxicol Environ Saf ; 147: 124-131, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28841527

RESUMO

In temperate zones, seeds of spring-sown crops may be an attractive food source for breeding farmland birds. We modelled the effects of pesticide seed treatments on the reproductive success of 4 UK arable bird species (Rook, Linnet, Skylark, Yellowhammer) exposed to treated seeds of 3 spring-sown crops (beans, barley and linseed). We ran three types of model, 1) a "broods-at-risk" model looking at the temporal overlap between nesting and seed-sowing dates, and estimating the proportion of those nests that suffered toxicity-exposure ratios < 5; 2) a "seasonal success" Markov chain model estimating the number of chicks successfully raised in the course of a breeding season.; and 3) the potential effects of pesticides on population growth rates. Based on physiology, Rooks, should be less at risk from treated seeds than smaller species because bigger birds eat less as a proportion of their bodyweights. However, in nearly all our scenarios, Rooks were more vulnerable, followed by Skylark and Linnet, with Yellowhammer being least affected. A principal cause is that Rooks are more likely to be breeding at a time when treated seeds are being sown. Furthermore, whereas the other species may make several breeding attempts and early failures from pesticide exposure may be compensated by later successes, Rooks breed only once in a season. The results are also supported by historical evidence of Rook population declines following pesticide seed treatments.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Poluentes Ambientais/toxicidade , Modelos Teóricos , Passeriformes/fisiologia , Praguicidas/toxicidade , Reprodução/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Animais , Ingestão de Alimentos , Monitoramento Ambiental , Poluentes Ambientais/farmacologia , Cadeias de Markov , Praguicidas/farmacologia , Reino Unido
9.
Food Sci Nutr ; 12(4): 2334-2345, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38628215

RESUMO

By identifying the factors that initiate seed dormancy release, we can reliably predict whether a seed will remain dormant within or exit the seed bank and become a seedling. With regard to annual weed species, assessing which factors efficiently break seed dormancy is critical for estimating the number of weed seeds that will develop into problematic weeds. To better understand dormancy breaking in Redroot pigweed (Amaranthus retroflexus), dormant seeds were treated with cold stratification (4°C for 30 days), application of gibberellic acid (at 500, 1000, 1500, and 2000 parts per million), ultrasound (for 10, 20, 30, and 40 min), soaking in hot water (90°C for 3, 5, 7, and 10 min), and 98% sulfuric acid (for 1, 2, and 3 min). The results showed that Redroot pigweed seed dormancy was effectively broken by cold stratification, gibberellic acid, and ultrasound. Short treatments with hot water had minimal effect while longer times or treatment with sulfuric acid stopped seed germination. In addition to germination percentage, germination rate, plumule length, radicle length, seedling length, seedling dry weight, and seed vigor index were also measured; similarly, application of gibberellic acid had the most significant effect on these parameters. The results of this study add to our knowledge of what processes effectively or ineffectively break Redroot pigweed seed dormancy and promote growth.

10.
Front Plant Sci ; 15: 1357153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685958

RESUMO

Vegetable cultivation stands as a pivotal element in the agricultural transformation illustrating a complex interplay between technological advancements, evolving environmental perspectives, and the growing global demand for food. This comprehensive review delves into the broad spectrum of developments in modern vegetable cultivation practices. Rooted in historical traditions, our exploration commences with conventional cultivation methods and traces the progression toward contemporary practices emphasizing the critical shifts that have refined techniques and outcomes. A significant focus is placed on the evolution of seed selection and quality assessment methods underlining the growing importance of seed treatments in enhancing both germination and plant growth. Transitioning from seeds to the soil, we investigate the transformative journey from traditional soil-based cultivation to the adoption of soilless cultures and the utilization of sustainable substrates like biochar and coir. The review also examines modern environmental controls highlighting the use of advanced greenhouse technologies and artificial intelligence in optimizing plant growth conditions. We underscore the increasing sophistication in water management strategies from advanced irrigation systems to intelligent moisture sensing. Additionally, this paper discusses the intricate aspects of precision fertilization, integrated pest management, and the expanding influence of plant growth regulators in vegetable cultivation. A special segment is dedicated to technological innovations, such as the integration of drones, robots, and state-of-the-art digital monitoring systems, in the cultivation process. While acknowledging these advancements, the review also realistically addresses the challenges and economic considerations involved in adopting cutting-edge technologies. In summary, this review not only provides a comprehensive guide to the current state of vegetable cultivation but also serves as a forward-looking reference emphasizing the critical role of continuous research and the anticipation of future developments in this field.

11.
J Fungi (Basel) ; 8(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35628729

RESUMO

Antifungal efficacy of Azotobacter salinestris against trichothecene-producing Fusarium spp. was investigated in maize, sorghum, and wheat. The three cereals were subjected to four treatments as control (T1), Fusarium alone (T2), combination of Fusarium and A. salinestris treatment (T3), and only A. salinestris (T4). All the treatments were evaluated for total mass of seedlings, root and shoot length, seed germination, and vigor index (VI), and extent of rhizoplane colonization by A. salinestris was investigated. Further, greenhouse studies were conducted to learn the efficacy of A. salinestris in vivo conditions. Antifungal efficacy was tested by the dual-culture method which resulted in significant reduction in Fusarium growth. Infection by Fusarium was reduced up to 50% in treated cereals such as maize, sorghum, and wheat, and there was also significant increase in seedling mass in the three hosts. Maize showed the highest VI (1859.715), followed by sorghum (1470.84), and wheat (2804.123) with A. salinestris treatment. In addition, seed germination was enhanced to 76% in maize, 69% in sorghum, and 68% in wheat, respectively. Efficacy of rhizoplane colonization showed successful isolation of A. salinestris with high CFU rate, and furthermore, significant colonization inhibition by Fusarium spp. was observed. In the greenhouse conditions, on the 45th day of the experimental set-up, the highest shoot length/root length recorded in maize was 155.70/70.0 cm, in sorghum 165.90/48.0 cm, and in wheat 77.85/56.0 cm, and the maximum root mass recorded was 17.53 g in maize, 4.52 g in sorghum, and 1.90 g in wheat. Our present study showed that seed treatment by A. salinestris, may be used as an alternate biocontrol method against Fusarium infection in maize, sorghum, and wheat.

12.
Polymers (Basel) ; 14(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890629

RESUMO

Fungal pathogens cause significant yield losses of many important crops worldwide. They are commonly controlled with fungicides which may have negative impact on human health and the environment. A more sustainable plant protection can be based on carbohydrate biopolymers because they are biodegradable and may act as antifungal compounds, effective elicitors or carriers of active ingredients. We reviewed recent applications of three common polysaccharides (chitosan, alginate and cellulose) to crop protection against pathogenic fungi. We distinguished treatments dedicated for seed sowing material, field applications and coating of harvested fruits and vegetables. All reviewed biopolymers were used in the three types of treatments, therefore they proved to be versatile resources for development of plant protection products. Antifungal activity of the obtained polymer formulations and coatings is often enhanced by addition of biocontrol microorganisms, preservatives, plant extracts and essential oils. Carbohydrate polymers can also be used for controlled-release of pesticides. Rapid development of nanotechnology resulted in creating new promising methods of crop protection using nanoparticles, nano-/micro-carriers and electrospun nanofibers. To summarize this review we outline advantages and disadvantages of using carbohydrate biopolymers in plant protection.

13.
Environ Technol ; 42(16): 2489-2503, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31825722

RESUMO

The treatment of seeds using pesticides is a widely employed technique that generates effluents with high contamination potential. In the present study, our objective was to characterize and evaluate the toxicity of washing wastewater from corn seed treaters that contained the pesticide thiamethoxam. Effluents were treated by adsorption using several adsorbent materials, namely activated vegetable carbon, corn straw, and soybean hulls, different pH, and distinct mass concentrations for each material. The activated carbon promoted a greater reduction in the chemical oxygen demand (COD). In the coagulation-flocculation treatment, with ferric chloride (FeCl3) and poly-aluminum chloride (PAC), and using factorial planning with the concentration of FeCl3 and the sedimentation time as independent variables, the best COD removal occurred with 850 mg L-1 FeCl3 and 120 min sedimentation. The treatments C (coagulation), CACA (coagulation followed by adsorption with activated vegetable carbon), and CACS (coagulation followed by adsorption with corn straw) presented the most efficacious physicochemical parameter changes. The CACA treatment showed the best result for removing thiamethoxam. Nevertheless, raw and treated effluents showed high toxicity to the bioindicators Artemia salina L. (immobility/mortality test), Eisenia fetida (avoidance test), and Allium cepa L. (cytotoxicity test). The effluents also produced a mutagenic effect for A. cepa, due to the presence of chromosomal changes. The results demonstrated the risk that this effluent can cause to the environment. These data highlight the need to investigate new technologies to reduce the physicochemical parameters, the agrochemical levels, and, in particular, the final effluent toxicity.


Assuntos
Poluentes Químicos da Água , Análise da Demanda Biológica de Oxigênio , Floculação , Tiametoxam , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
Sci Total Environ ; 742: 140493, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32629254

RESUMO

Since neonicotinoid insecticides were introduced to the agricultural market, evidence of the negative impacts of these systemic compounds on non-target species has accumulated. Birds are one of the largest groups of species to inhabit farmland, but the extent of neonicotinoid exposure in avian communities is poorly understood and very little is known about how any exposure may affect wild birds. Here, free-living gamebirds were used as a model group to measure the extent of avian exposure to the neonicotinoid clothianidin via seed treatment. During a typical sowing period of winter cereals treated with clothianidin, blood and liver samples were collected simultaneously from individual hunted gamebird carcasses, both pre- (n = 18) and post-sowing (n = 57) and were analysed for clothianidin via LC/MS-MS. Body weight, fat score and faecal parasite load were also quantified in the birds to ascertain whether any of these health parameters were associated with clothianidin exposure under field conditions. Clothianidin was detected in 6% of individuals sampled pre-sowing and 89% of individuals sampled post-sowing. The frequency of clothianidin detection in plasma samples and the concentration of clothianidin in liver and plasma samples decreased significantly between the first week and 2-4 weeks post-sowing. Faecal parasite load was positively associated with concentrations of clothianidin in the liver (but not plasma) of partridge species, but there was no association between clothianidin concentration and fat score or body weight, for either sample type. This study provides clear evidence that treated seed is a source of pesticide exposure for gamebirds following autumn sowing. These findings have implications for gamebirds worldwide where seed treatments are in use, and will aid the design of any future avian biomonitoring studies for agrochemical compounds.


Assuntos
Guanidinas , Inseticidas , Animais , Fígado , Neonicotinoides , Prevalência , Tiazóis
15.
Sci Total Environ ; 666: 68-78, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30798245

RESUMO

Neonicotinoid seed coatings have been used as a major method to control seedling pests, especially the cotton aphid (Aphis gossypii Glover), around the world. However, their negative influence on natural enemies and pollinators has been criticized for decades. The present study was designed to compare the efficacy of nitenpyram and thiamethoxam for A. gossypii control, impacts on natural enemies and their potential risks to honeybees. Investigations in two locations in China revealed that the seed treatment with nitenpyram at a dosage of 3 g a.i. kg-1 seed could effectively control A. gossypii throughout the seedling stage. In addition, Nitenpyram at the dosage of 2 g a.i. kg-1 seed did not significantly change present number of the 7-spot ladybeetles in fields, compared with thiamethoxam treatments and blank control. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) was utilized to identify and quantify the residue dynamics and transformation of parental and metabolite products in pollen and leaves. On the basis of residue data, the first-tier risk assessment disclosed that nitenpyram applied at doses of 2, 3 and 4 g a.i. kg-1 seed might result in relative lower potential exposure risks to honeybees when compared with thiamethoxam. These results enable us to better understand the performance of nitenpyram seed treatments against A. gossypii during the seedling stage, indicating that nitenpyram may be safer than thiamethoxam for natural enemies and honeybees.


Assuntos
Afídeos , Abelhas/efeitos dos fármacos , Controle de Insetos , Inseticidas , Neonicotinoides , Tiametoxam , Animais , Cromatografia Líquida de Alta Pressão , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Medição de Risco , Espectrometria de Massas em Tandem , Tiametoxam/toxicidade
16.
Pest Manag Sci ; 74(2): 366-374, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28842951

RESUMO

BACKGROUND: Use of fungicide seed treatments for control of soybean soilborne diseases such as Pythium damping-off has increased worldwide. However, emergence of Pythium strains resistant to metalaxyl-M has prompted the need for alternative technologies to fungicides for damping-off control. The use of phosphites (Phis) has been proposed as a method to control oomycetes, but their use as seed treatments in soybean is limited by the lack of information on their efficacy. The effect of potassium (K) and manganese (Mn) Phis (as seed treatments) in the control of Pythium damping-off in soybean was evaluated in vitro and in vivo. In vitro, treated seeds and a control were placed on potato dextrose agar and the damping-off severity caused by Pythium aphanidermatum (Edson) Fitzpatrick, Pythium irregulare Buisman, and Pythium ultimum Trow was assessed 5 days after incubation using an ordinal scale. In vivo, treated seeds and a control were planted in polystyrene pots and emergence was evaluated 21 days after planting. RESULTS: Analysis of the in vitro data using a multinomial generalized linear model showed that the probabilities of non-germinated, dead seeds ranged from 0.64 to 1.00 in the control and from 0 to 0.13 in the Phi treatments in each of the Pythium species. Probabilities of seed germination without or with damping-off symptoms were significantly higher for seeds treated with the Phi products than for the control. In the in vivo experiment, the Phi-based products increased seedling emergence by up to 29% on average compared with the untreated control. CONCLUSION: Mn and K Phis are feasible alternatives as seed treatments to control Pythium damping-off in soybean. This study is the first, worldwide, to document the efficacy of K and Mn Phis in the control of soybean Pythium damping-off. © 2017 Society of Chemical Industry.


Assuntos
Fungicidas Industriais/farmacologia , Fosfitos/farmacologia , Doenças das Plantas/prevenção & controle , Pythium/efeitos dos fármacos , Manganês/farmacologia , Compostos de Potássio/farmacologia , Glycine max/microbiologia
17.
Insects ; 8(3)2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28783074

RESUMO

The challenge of managing agroecosystems on a landscape scale and the novel structure of soil communities in agroecosystems both provide reason to focus on in-field management practices, including cover crop adoption, reduced tillage, and judicial pesticide use, to promote soil community diversity. Belowground and epigeal arthropods, especially exotic generalist predators, play a significant role in controlling insect pests, weeds, and pathogens in agroecosystems. However, the preventative pest management tactics that dominate field-crop production in the United States do not promote biological control. In this review, we argue that by reducing disturbance, mitigating the effects of necessary field activities, and controlling pests within an Integrated Pest Management framework, farmers can facilitate the diversity and activity of native and exotic arthropod predators.

18.
Insect Sci ; 22(5): 679-87, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25176158

RESUMO

Chlorantraniliprole seed treatments in rice provide effective suppression of rice water weevil populations in the United States; however, heavy reliance on prophylactic insecticide treatments as a sole strategy could destabilize management programs for this insect. The present research evaluated the compatibility of seed treatments with two other potential management tactics-plant resistance and shallow flooding-by conducting two split-plot experiments in 2009 and 2011. In both experiments, no substantial antagonism was found among the 3 different tactics. Statistical interactions in these experiments arose from the strong and persistent effects of chlorantraniliprole on larval densities rather than incompatibility of tactics. In 2009, weevil densities differed among varieties and were significantly lower on the cultivar "Jefferson." In 2011, weevil densities were reduced significantly in shallow-flooded plots compared to deep-flooded plots. Significant reductions in weevil numbers by chlorantraniliprole seed treatments, even at application rates 5 fold lower than commercially recommended rates, demonstrated the potential to reduce application rates of this highly potent larvicide. These latter results suggest that future studies on the relationship between chlorantraniliprole seed treatment rate and weevil fitness are warranted.


Assuntos
Controle de Insetos/métodos , Oryza/crescimento & desenvolvimento , Sementes , Gorgulhos/crescimento & desenvolvimento , ortoaminobenzoatos , Irrigação Agrícola , Animais , Inseticidas , Larva/crescimento & desenvolvimento , Oryza/genética
19.
J Nematol ; 15(4): 491-5, 1983 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19295836

RESUMO

Soaking potato tuber pieces for 15 min in 8,000 mug/ml of oxamyl just before planting reduced the number of Globodera rostochiensis cysts that developed on potato roots, but this treatment was phytotoxic. Five foliar applications of 1.12 kg a.i./ha of oxamyl or carbofuran at 10-day intervals beginning when 90% of the plants had emerged suppressed increase in G. rostochiensis densities. Similar foliar applications of phenamiphos were ineffective in controlling G. rostochiensis. Soil applications (in the row at planting) of aldicarb, carbofuran, phenamiphos, ethoprop, and oxamyl at 5.6 kg a.i./ha reduced the numbers of white females that developed on potato roots, but only those treatments involving aldicarb and oxamyl suppressed G. rostochiensis population increase. Combined soil and foliar treatments did not provide any advantage over soil treatment alone, as soil applications of 5.6 kg a.i./ha alone were equal to, or better than, combined soil (3.4 kg a.i./ha) and foliar (2.2 kg a.i./ha) applications in controlling G. rostochiensis.

20.
Environ Pollut ; 193: 189-196, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25042208

RESUMO

Neonicotinoid insecticides are of environmental concern, but little is known about their occurrence in surface water. An area of intense corn and soybean production in the Midwestern United States was chosen to study this issue because of the high agricultural use of neonicotinoids via both seed treatments and other forms of application. Water samples were collected from nine stream sites during the 2013 growing season. The results for the 79 water samples documented similar patterns among sites for both frequency of detection and concentration (maximum:median) with clothianidin (75%, 257 ng/L:8.2 ng/L) > thiamethoxam (47%, 185 ng/L:<2 ng/L) > imidacloprid (23%, 42.7 ng/L: <2 ng/L). Neonicotinoids were detected at all nine sites sampled even though the basin areas spanned four orders of magnitude. Temporal patterns in concentrations reveal pulses of neonicotinoids associated with rainfall events during crop planting, suggesting seed treatments as their likely source.


Assuntos
Glycine max/química , Inseticidas/análise , Rios/química , Poluentes Químicos da Água/análise , Zea mays/química , Agricultura , Animais , Monitoramento Ambiental , Guanidinas/análise , Imidazóis/análise , Neonicotinoides , Nitrocompostos/análise , Oxazinas/análise , Sementes/química , Tiametoxam , Tiazóis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA