Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897886

RESUMO

Facile construction of functional nanomaterials with laccase-like activity is important in sustainable chemistry since laccase is featured as an efficient and promising catalyst especially for phenolic degradation but still has the challenges of high cost, low activity, poor stability and unsatisfied recyclability. In this paper, we report a simple method to synthesize nanozymes with enhanced laccase-like activity by the self-assembly of copper ions with various imidazole derivatives. In the case of 1-methylimidazole as the ligand, the as-synthesized nanozyme (denoted as Cu-MIM) has the highest yield and best activity among the nanozymes prepared. Compared to laccase, the Km of Cu-MIM nanozyme to phenol is much lower, and the vmax is 6.8 times higher. In addition, Cu-MIM maintains excellent stability in a variety of harsh environments, such as high pH, high temperature, high salt concentration, organic solvents and long-term storage. Based on the Cu-MIM nanozyme, we established a method for quantitatively detecting phenol concentration through a smartphone, which is believed to have important applications in environmental protection, pollutant detection and other fields.


Assuntos
Imidazóis , Lacase , Catálise , Cobre/química , Lacase/química , Fenol , Fenóis
2.
J Hazard Mater ; 443(Pt A): 130124, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36308928

RESUMO

Plasmonic nanoparticles that self-assemble into highly ordered superlattice nanostructures hold substantial promise for facilitating ultra-trace surface-enhanced Raman scattering (SERS) detection. Herein, we propose a boiling-point evaporation method to synthesize ordered monocrystal-like superlattice Au nanostructures (OML-Au NTs) with a polyhedral morphology. Combined with thermal nanoimprint technology, OML-Au NTs were directly transferred to impact-resistant polystyrene (IPS) flexible SERS substrates, the obtained flexible substrates (donated as OML-Au NTs/IPS) detection limit for R6G molecules as low as 10-13 M. These results were confirmed by simulating the electromagnetic field distribution of ordered/unordered two-dimensional single-layer and three-dimensional aggregated gold nanostructures. The OML-Au NTs/IPS substrates were successfully used to detect and quantify three commonly-used agricultural pesticides, achieving detection limits as low as 10-11 M and 10-12 M, and in situ real-time detection limit reached 0.24 pg/cm2 for thiram on apple peels, which was 3 orders of magnitude lower than the current detection limit. In addition, the Raman intensity from multiple locations showed a relative standard deviation lower than 7 %, exhibiting the reliability necessary for practical applications. As a result, this research demonstrates a highly reproducible method to enable the development of plasmonic nanomaterials with flexible superstructures.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Ouro/química , Análise Espectral Raman/métodos , Nanoestruturas/química
3.
ACS Appl Mater Interfaces ; 10(37): 31394-31403, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30141620

RESUMO

We present the self-assembly synthesis of core-shell structure Au/CeO2 composites with different Au loadings through a spontaneous chemical redox approach at an ambient temperature utilizing HAuCl4 and Ce(NO3)3 as reaction substrates in an alkaline environment. The results demonstrate that the as-synthesized Au/CeO2 composites exhibit spherical shape morphologies with porous structures, composed of Au nanoparticle (∼10 nm) cores and CeO2 nanoparticle shells with abundant oxygen vacancies. The introduction of Au nanoparticles in CeO2 not only effectively improves the visible light utilization efficiency but also provides rich surface catalytic active sites for highly efficient visible light photocatalysis. As visible light photocatalysts (λ > 400 nm), the as-synthesized Au/CeO2 composites with the Au loading amount ≥4.0 wt % exhibit high conversion and selectivity (∼100%) of benzyl alcohol to benzaldehyde under the given experimental conditions. Moreover, Au/CeO2 also shows a general applicability as a visible light photocatalyst for the selective oxidation of other alcohols to corresponding aldehydes or ketones. The photocatalytic mechanism studies indicate that the photoelectrons/holes produced from the photoexcited Au and the formed superoxide radicals in the oxygen vacancies of CeO2 synergistically contribute to the high performance of the selective photocatalytic oxidation of alcohols to aldehydes or ketones.

4.
J Colloid Interface Sci ; 678(Pt C): 987-1000, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39326170

RESUMO

The low utilization of visible light and easy recombination of charge carriers of graphitic carbon nitride (CN) restrain its application as photo-electron donor and metal site support in photo-Fenton system. Herein, a hydrogen bond-induced supramolecular self-assembly strategy was created to fabricate an ultra-dispersed Cu-loaded porous tubular CN composite (CA-Cu/TCN) by the hydrothermal-pyrolysis method with citric acid (CA) as initiator and chelating agent. CA-Cu/TCN with rich nitrogen vacancies (NVs) and abundant ultra-dispersed CuNx sites exhibited narrow bandgap, favorable visible light absorption capability, and high separation and transfer efficiency of charge carriers. CA-Cu/TCN effectively catalyzed the activation of H2O2 for generating abundant reactive oxygen species under visible light irradiation, contributing to efficient degradation of ciprofloxacin (CIP) with removal rate of 95.9 % and kinetic rate constant of 0.0948 min-1. The superior catalytic activity of CA-Cu/TCN can be ascribed to the effective transport of photogenerated electrons, high specific surface area, atomically dispersed Cu species, and enriched surface NVs. The mechanism of photo-Fenton catalytic degradation of CIP and possible degradation pathways were proposed as the dominant role of 1O2. Toxicity evaluation of CIP and intermediates indicated that the degradation of CIP was a gradual detoxification process. This work offers a novel self-assembly strategy to design and synthesize highly active and sustainable visible light-driven photo-Fenton catalysts for effectively degrading organic pollutants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA