Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 199(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28784817

RESUMO

Hemolysins are important virulence factors for many bacterial pathogens, including Serratia marcescens The role of the major hemolysin gene in the insect pathogen Serratia sp. strain SCBI was investigated using both forward and reverse-genetics approaches. Introduction of the major hemolysin gene into Escherichia coli resulted in a gain of both virulence and hemolytic activity. Inactivation of this hemolysin in Serratia sp. SCBI resulted in a loss of hemolysis but did not attenuate insecticidal activity. Unexpectedly, inactivation of the hemolysin gene in Serratia sp. SCBI resulted in significantly increased motility and increased antimicrobial activity. Reverse transcription-quantitative PCR (qRT-PCR) analysis of mutants with a disrupted hemolysin gene showed a dramatic increase in mRNA levels of a nonribosomal peptide synthetase gene, swrA, which produces the surfactant serrawettin W2. Mutation of the swrA gene in Serratia sp. SCBI resulted in highly varied antibiotic activity, motility, virulence, and hemolysis phenotypes that were dependent on the site of disruption within this 17.75-kb gene. When introduced into E. coli, swrA increases rates of motility and confers antimicrobial activity. While it is unclear how inactivation of the major hemolysin gene influences the expression of swrA, these results suggest that swrA plays an important role in motility and antimicrobial activity in Serratia sp. SCBI.IMPORTANCE The opportunistic Gram-negative bacteria of the genus Serratia are widespread in the environment and can cause human illness. A comparative genomics analysis between Serratia marcescens and a new Serratia species from South Africa, termed Serratia sp. strain SCBI, shows that these two organisms are closely related but differ in pathogenesis. S. marcescens kills Caenorhabditis nematodes, while Serratia sp. SCBI is not harmful and forms a beneficial association with them. This distinction presented the opportunity to investigate potential differences in regulation of common virulence mechanisms between these two species. With the emergence of antibiotic-resistant microorganisms, there is a widespread need to understand the regulation of pathogenesis. The significance of this study is the presentation of evidence for cross-pathway regulation of virulence factors and how the elimination of one mechanism may be compensated for by the upregulation of others.


Assuntos
Regulação Bacteriana da Expressão Gênica , Inativação Gênica , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Peptídeo Sintases/biossíntese , Serratia/genética , Serratia/metabolismo , Animais , Anti-Infecciosos/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Insetos/microbiologia , Insetos/fisiologia , Locomoção , Peptídeo Sintases/genética , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , Serratia/enzimologia , Serratia/patogenicidade , Análise de Sobrevida , Virulência
2.
BMC Genomics ; 17(1): 865, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27809759

RESUMO

BACKGROUND: Gram-negative bacteria of the genus Serratia are potential producers of many useful secondary metabolites, such as prodigiosin and serrawettins, which have potential applications in environmental bioremediation or in the pharmaceutical industry. Several Serratia strains produce prodigiosin and serrawettin W1 as the main bioactive compounds, and the biosynthetic pathways are co-regulated by quorum sensing (QS). In contrast, the Serratia strain, which can simultaneously produce prodigiosin and serrawettin W2, has not been reported. This study focused on analyzing the genomic sequence of Serratia sp. strain YD25T isolated from rhizosphere soil under continuously planted burley tobacco collected from Yongding, Fujian province, China, which is unique in producing both prodigiosin and serrawettin W2. RESULTS: A hybrid polyketide synthases (PKS)-non-ribosomal peptide synthetases (NRPS) gene cluster putatively involved in biosynthesis of antimicrobial serrawettin W2 was identified in the genome of YD25T, and its biosynthesis pathway was proposed. We found potent antimicrobial activity of serrawettin W2 purified from YD25T against various pathogenic bacteria and fungi as well as antitumor activity against Hela cells. Subsequently, comparative genomic analyses were performed among a total of 133 Serratia species. The prodigiosin biosynthesis gene cluster in YD25T belongs to the type I pig cluster, which is the main form of pig-encoding genes existing in most of the pigmented Serratia species. In addition, a complete autoinducer-2 (AI-2) system (including luxS, lsrBACDEF, lsrGK, and lsrR) as a conserved bacterial operator is found in the genome of Serratia sp. strain YD25T. Phylogenetic analysis based on concatenated Lsr and LuxS proteins revealed that YD25T formed an independent branch and was clearly distant from the strains that solely produce either prodigiosin or serrawettin W2. The Fe (III) ion reduction assay confirmed that strain YD25T could produce an AI-2 signal molecule. Phylogenetic analysis using the genomic sequence of YD25T combined with phylogenetic and phenotypic analyses support this strain as a member of a novel and previously uncharacterized Serratia species. CONCLUSION: Genomic sequence and metabolite analysis of Serratia surfactantfaciens YD25T indicate that this strain can be further explored for the production of useful metabolites. Unveiling the genomic sequence of S. surfactantfaciens YD25T benefits the usage of this unique strain as a model system for studying the biosynthesis regulation of both prodigiosin and serrawettin W2 by the QS system.


Assuntos
Genoma Bacteriano , Genômica , Lipoproteínas/biossíntese , Metaboloma , Metabolômica , Peptídeos Cíclicos/biossíntese , Prodigiosina/biossíntese , Serratia/genética , Serratia/metabolismo , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Biologia Computacional/métodos , Mineração de Dados , Ácidos Graxos/metabolismo , Genômica/métodos , Lipoproteínas/genética , Lipoproteínas/farmacologia , Metabolômica/métodos , Família Multigênica , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/farmacologia , Fenótipo , Filogenia , Prodigiosina/farmacologia , Percepção de Quorum/genética , Serratia/classificação
3.
Microbiol Spectr ; 12(7): e0295223, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38842361

RESUMO

The study aimed to investigate the antibacterial activity, cytotoxicity, and mechanism of action of the non-ionic, cyclic lipopeptide, serrawettin W2-FL10 against Staphylococcus aureus. W2-FL10 exhibited potent activity against the Gram-positive bacteria S. aureus, Enterococcus faecalis, Enterococcus faecium, Listeria monocytogenes, and Bacillus subtilis, with minimum inhibitory concentration (MIC) values ranging from 6.3 to 31.3 µg/mL, while no activity was observed against Gram-negative bacteria. Broth microdilution assays showed that W2-FL10 interacted with key cell membrane components, such as lipid phosphatidyl glycerol and lipoteichoic acid of S. aureus. Upon membrane interaction, W2-FL10 dissipated membrane potential within 12 min and increased S. aureus membrane permeability within 28-40 min, albeit at slower rates and higher concentrations than the lytic peptide melittin. The observed membrane permeability, as detected with propidium iodide (PI), may be attributed to transmembrane pores/lesions, possibly dependent on dimer-driven lipopeptide oligomerization in the membrane. Scanning electron microscopy (SEM) imaging also visually confirmed the formation of lesions in the cell wall of one of the S. aureus strains, and cell damage within 1 h of exposure to W2-FL10, corroborating the rapid time-kill kinetics of the S. aureus strains. This bactericidal action against the S. aureus strains corresponded to membrane permeabilization by W2-FL10, indicating that self-promoted uptake into the cytosol may be part of the mode of action. Finally, this lipopeptide exhibited low to moderate cytotoxicity to the Chinese hamster ovarian (CHO) cell line in comparison to the control (emetine) with an optimal lipophilicity range (log D value of 2.5), signifying its potential as an antibiotic candidate. IMPORTANCE: Antimicrobial resistance is a major public health concern, urgently requiring antibacterial compounds exhibiting low adverse health effects. In this study, a novel antibacterial lipopeptide analog is described, serrawettin W2-FL10 (derived from Serratia marcescens), with potent activity displayed against Staphylococcus aureus. Mechanistic studies revealed that W2-FL10 targets the cell membrane of S. aureus, causing depolarization and permeabilization because of transmembrane lesions/pores, resulting in the leakage of intracellular components, possible cytosolic uptake of W2-FL10, and ultimately cell death. This study provides the first insight into the mode of action of a non-ionic lipopeptide. The low to moderate cytotoxicity of W2-FL10 also highlights its application as a promising therapeutic agent for the treatment of bacterial infections.


Assuntos
Antibacterianos , Membrana Celular , Lipopeptídeos , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Animais , Staphylococcus aureus/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Ácidos Teicoicos/metabolismo , Ácidos Teicoicos/química , Bactérias Gram-Negativas/efeitos dos fármacos
4.
Pathogens ; 11(2)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35215141

RESUMO

Bursaphelenchus xylophilus, also known as pinewood nematode (PWN), is the pathogenic agent of pine wilt disease (PWD), which affects pine trees around the world. Infection spread globally through international wood commerce and locally by vector beetles, threatening the wood world economy. As climate changes, more countries are becoming susceptible to PWD and, to prevent disease spread and limit economic and ecological losses, better knowledge about this pathogenic agent is needed. Serratia strains, present in the endophytic community of pine trees and carried by PWN, may play an important role in PWD. This work aimed to better understand the interaction between Serratia strains and B. xylophilus and to assess the nematicidal potential of serratomolide-like molecules produced by Serratia strains. Serrawettin gene presence was evaluated in selected Serratia strains. Mortality tests were performed with bacteria supernatants, and extracted amino lipids, against Caenorhabditis elegans (model organism) and B. xylophilus to determine their nematicidal potential. Attraction tests were performed with C. elegans. Concentrated supernatants of Serratia strains with serratamolide-like lipopeptides were able to kill more than 77% of B. xylophilus after 72 h. Eight specific amino lipids showed a high nematicidal activity against B. xylophilus. We conclude that, for some Serratia strains, their supernatants and specific amino lipids showed nematicidal activity against B. xylophilus.

5.
Microbiol Res ; 229: 126329, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31518853

RESUMO

The genus Serratia is a predominantly unexplored source of antimicrobial secondary metabolites. The aim of the current study was thus to isolate and evaluate the antimicrobial properties of biosurfactants produced by Serratia species. Forty-nine (n = 34 pigmented; n = 15 non-pigmented) biosurfactant producing Serratia strains were isolated from environmental sources and selected isolates (n = 11 pigmented; n = 11 non-pigmented) were identified as Serratia marcescens using molecular typing. The swrW gene (serrawettin W1 synthetase) was detected in all the screened pigmented strains and one non-pigmented strain and primers were designed for the detection of the swrA gene (non-ribosomal serrawettin W2 synthetase), which was detected in nine non-pigmented strains. Crude extracts obtained from S. marcescens P1, NP1 and NP2 were chemically characterised using ultra-performance liquid chromatography coupled to electrospray ionisation mass spectrometry (UPLC-ESI-MS), which revealed that P1 produced serrawettin W1 homologues and prodigiosin, while NP1 produced serrawettin W1 homologues and glucosamine derivative A. In contrast, serrawettin W2 analogues were predominantly identified in the crude extract obtained from S. marcescens NP2. Both P1 and NP1 crude extracts displayed broad-spectrum antimicrobial activity against clinical, food and environmental pathogens, such as multidrug-resistant Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus and Cryptococcus neoformans. In contrast, the NP2 crude extract displayed antibacterial activity against a limited range of pathogenic and opportunistic pathogens. The serrawettin W1 homologues, in combination with prodigiosin and glucosamine derivatives, produced by pigmented and non-pigmented S. marcescens strains, could thus potentially be employed as broad-spectrum therapeutic agents against multidrug-resistant bacterial and fungal pathogens.


Assuntos
Antibacterianos/farmacologia , Depsipeptídeos/farmacologia , Lipoproteínas/farmacologia , Peptídeos Cíclicos/farmacologia , Prodigiosina/farmacologia , Serratia marcescens/química , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Depsipeptídeos/química , Depsipeptídeos/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Prodigiosina/química , Prodigiosina/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Metabolismo Secundário , Serratia marcescens/metabolismo , Tensoativos/química , Tensoativos/metabolismo , Tensoativos/farmacologia
6.
Front Microbiol ; 10: 1178, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244787

RESUMO

The increasing prevalence of antibiotic-resistant human pathogens is a growing public concern and there is intense pressure to identify new antibacterial compounds that can be developed into antibiotics with novel mode of action. Evolutionary theory predicts that insects that have evolved to occupy sophisticated ecological niches by feeding and reproducing on carcasses will depend on their gut microbiome to prevent colonization by invading pathogens taken up with the diet. This inspired our hypothesis that the complex interactions between the core microbiome and the more flexible microbial communities dependent on the environment may promote the outsourcing of antibiotic synthesis to beneficial microbes. We tested this hypothesis by cultivating and characterizing bacteria isolated from the gut of the burying beetle Nicrophorus vespilloides, which feeds and reproduces on small vertebrate carcasses buried in the soil to avoid competitors such as fly maggots. The extracts of isolated bacteria were screened for activity against human pathogens such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans. More than 400 strains were isolated, among which the crude extract of Serratia marcescens 2MH3-2 displayed promising activity against Staphylococcus aureus. Bioactivity-guided fractionation enabled purification of the primary antimicrobial compound of the extract. By LC-MS and NMR experiments, it was identified as serrawettin W2 (C38H61N5O9), the antibacterial and nematostatic activity of which was corroborated in our study. We postulate that this antibiotic could contribute to the control of both bacteria and phoretic nematodes in the gut, which compete for food when transferred to the carcass. Our study shows that the gut microbiome of N. vespilloides is a promising resource for the screening of antibiotic-producing bacteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA