Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Urban Health ; 100(4): 811-833, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535302

RESUMO

Infrastructure upgrading projects are a key element in enhancing the livelihood of residents in slum areas. These projects face significant constructability challenges common to dense-urban construction coupled with the unique socioeconomic challenges of operating in slums. This research focuses on sanitation network upgrading projects in slum areas and proposes a novel methodology capable of (1) accounting for the unique constructability challenges for these projects, (2) accelerating the provision of sanitation services, and (3) optimizing construction decisions. The key contribution of this research to the body of knowledge is in developing a comprehensive construction planning framework capable of achieving these three objectives. The proposed framework focuses specifically on sewer lines upgrading within the larger sanitation networks upgrading projects. This framework consists of five main models that can guide planners in selecting the appropriate equipment sizes, trench system configuration, and optimal equipment routing, in addition to identifying all possible execution sequences along with the corresponding construction cost and duration of each sequence. Most notably, this framework proposes an approach to assess the serviceability of different construction plans measured by how fast sanitary services can be provided to slum dwellers. A multi-objective, genetic algorithms optimization model is developed to identify the optimal construction plans that accelerate the sanitary service provision to residents while minimizing construction costs. A real-world example is presented to demonstrate the model capabilities in optimizing construction plans.


Assuntos
Áreas de Pobreza , Saneamento , Humanos
2.
Sensors (Basel) ; 22(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35808185

RESUMO

Mechatronic systems, like mobile robots, are fairly complex. They are composed of electromechanical actuation components and sensing elements supervised by microcontrollers running complex embedded software. This paper proposes a novel approach to aid mobile robotics developers in adopting a rigorous development process to design and verify the robot's detection and mitigation capabilities against random hardware failures affecting its sensors or actuators. Unfortunately, assessing the interactions between the various safety/mission-critical subsystem is quite complex. The failure mode effect analysis (FMEA) alongside an analysis of the failure detection capabilities (FMEDA) are the state-of-the-art methodologies for performing such an analysis. Various guidelines are available, and the authors decided to follow the one released by AIAG&VDA in June 2019. Since the robot's behavior is based on embedded software, the FMEA has been integrated with the hardware/software interaction analysis described in the ECSS-Q-ST-30-02C manual. The core of this proposal is to show how a simulation-based approach, where the mechanical and electrical/electronic components are simulated alongside the embedded software, can effectively support FMEA. As a benchmark application, we considered the mobility system of a proof-of-concept assistance rover for Mars exploration designed by the D.I.A.N.A. student team at Politecnico di Torino. Thanks to the adopted approach, we described how to develop the detection and mitigation strategies and how to determine their effectiveness, with a particular focus on those affecting the sensors.


Assuntos
Robótica , Algoritmos , Simulação por Computador , Computadores , Humanos , Robótica/métodos , Software
3.
Malar J ; 20(1): 171, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781261

RESUMO

BACKGROUND: As insecticide-treated nets (ITNs) wear out and are disposed, some household members are prioritized to use remaining ITNs. This study assessed how nets are allocated within households to individuals of different age categories as ITNs are lost or damaged and as new ITNs are obtained. The study also explored how ITN allocation affects ITN durability. METHODS: A cross-sectional household survey and ITN durability study was conducted among 2,875 households across Tanzania to determine the proportion of nets that remain protective (serviceable) 22 months after net distribution aiming for universal coverage. Allocation of study nets within houses, and re-allocation of ITNs when new universal replacement campaign (URC) nets arrived in study households in Musoma District, was also assessed. RESULTS: Some 57.0% (95% CI 53.9-60.1%) of households had sufficient ITNs for every household member, while 84.4% (95% CI 82.4-86.4%) of the population had access to an ITN within their household (assuming 1 net covers every 2 members). In households with sufficient nets, 77.5% of members slept under ITNs. In households without sufficient nets, pregnant women (54.6%), children < 5 years (45.8%) and adults (42.1%) were prioritized, with fewer school-age children 5-14 years (35.9%), youths 15-24 years (28.1%) and seniors > 65 years (32.6%) sleeping under ITNs. Crowding ([Formula: see text] 3 people sleeping under nets) was twice as common among people residing in houses without sufficient nets for all age groups, apart from children < 5. Nets were less likely to be serviceable if: [Formula: see text] 3 people slept under them (OR 0.50 (95% CI 0.40-0.63)), or if nets were used by school-age children (OR 0.72 (95% CI 0.56-0.93)), or if the net product was Olyset®. One month after the URC, only 23.6% (95% CI 16.7-30.6%) of the population had access to a URC ITN in Musoma district. Householders in Musoma district continued the use of old ITNs even with the arrival of new URC nets. CONCLUSION: Users determined the useful life of ITNs and prioritized pregnant women and children < 5 to serviceable ITNs. When household net access declines, users adjust by crowding under remaining nets, which further reduces ITN lifespan. School-age children that commonly harbour gametocytes that mediate malaria transmission are compelled to sleep under unserviceable nets, crowd under nets or remain uncovered. However, they were accommodated by the arrival of new nets. More frequent ITN delivery through the school net programme in combination with mass distribution campaigns is essential to maximize ITN effectiveness.


Assuntos
Mosquiteiros Tratados com Inseticida/estatística & dados numéricos , Malária/prevenção & controle , Controle de Mosquitos/estatística & dados numéricos , Propriedade/estatística & dados numéricos , Estudos Transversais , Características da Família , Mosquiteiros Tratados com Inseticida/provisão & distribuição , Controle de Mosquitos/instrumentação , Tanzânia
4.
Sci Total Environ ; 867: 161468, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36627001

RESUMO

Heavy metal contaminated soil (HMCS) threatens world health and sustainable growth, owing to which numerous remediation methods have been devised. Meanwhile, environmental sustainability and geotechnical serviceability of remediated HMCS are important considerations for reusing such soils and achieving sustainable development goals; therefore, these considerations are critically reviewed in this article. For this purpose, different onsite and offsite remediation methods are evaluated from environmental and geotechnical standpoints. It was found that each remediation method has its own merits and limitations in terms of environmental sustainability and geotechnical serviceability; generally, sustainable green remediation (SGR) and cementation are regarded as effective solutions for the problems related to the former and latter, respectively. Overall, the impact of remediation techniques on the environment and geotechnical serviceability is a developing area of study that calls for increased efforts to improve the serviceability, sustainability, reusability and environmental friendliness of the remediated HMCS.

5.
Model Earth Syst Environ ; 9(1): 1349-1368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36281341

RESUMO

Jammu and Kashmir in the northwestern part of the Himalayan region is frequently triggered with moderate to large magnitude earthquakes due to an active tectonic regime. In this study, a mathematical formulation-based Seismic Tunnel Damage Prediction (STDP) model is proposed using the deep learning (DL) approach. The pertinency of the DL model is validated using tunnel damage data from historical earthquakes such as the 1999 Chi-Chi earthquake, the 2004 Mid-Niigata earthquake, and the 2008 Wenchuan earthquake. Peak ground acceleration (PGA), source to site distance (SSD), overburden depth (OD), lining thickness (t), tunnel diameter (Ф), and geological strength index (GSI) were employed as inputs to train the Feedforward Neural Network (FNN) for damage state prediction. The performance evaluation results provided a clear indication for further use in a variety of risk assessment domains. When compared to models based on historical data, the proposed STDP model produces consistent results, demonstrating the robustness of the methodology used in this work. All models perform well during validation based on fitness metrics. The "STD multiple graphs" is also proposed which provide information on damage indexing, damage pattern, and crack predictive specifications. This can be used as a ready toolbox to check the vulnerability in post-seismic scenarios. The seismic design guidelines for tunnelling projects are also proposed, which discuss the damage pattern and suggest mitigation measures. The proposed STDP model, STD multiple graphs, and seismic design guidance are applicable to any earthquake-prone tunnelling project anywhere in the world.

6.
Materials (Basel) ; 17(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38203955

RESUMO

The structural systems of residential buildings in many developed countries have widely utilized reinforced concrete as the most common solution in construction systems since the early 20th century. The durability of reinforced concrete columns and beams is compromised, in most cases, by pathologies caused by the corrosion of their reinforcements. This study analyses the corrosion processes induced by carbonation in 25 buildings with reinforced concrete structures. The models estimate the service life of reinforced concrete elements by differentiating between the initiation period and the propagation period of damage, considering two possible stages: the time of corrosion propagation until the cracking of the concrete cover, and the time of propagation until a loss of section is considered unacceptable for structural safety. However, the mathematical expressions that model the propagation periods consider the same corrosion rate in both cases. This research has found that the average corrosion rate in elements with an unacceptable loss of reinforcement section was in the order of 8 times higher than the corrosion rate in cracked columns and beams without a loss of reinforcement. This opens up a path to improve the definition of the different stages experienced by a reinforced concrete element suffering corrosion of its reinforcements due to carbonation, because once the concrete has cracked, the corrosion rate increases significantly.

7.
Materials (Basel) ; 16(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903105

RESUMO

Fiber-reinforced polymer (FRP) composites have gained increasing recognition and application in the field of civil engineering in recent decades due to their notable mechanical properties and chemical resistance. However, FRP composites may also be affected by harsh environmental conditions (e.g., water, alkaline solutions, saline solutions, elevated temperature) and exhibit mechanical phenomena (e.g., creep rupture, fatigue, shrinkage) that could affect the performance of the FRP reinforced/strengthened concrete (FRP-RSC) elements. This paper presents the current state-of-the-art on the key environmental and mechanical conditions affecting the durability and mechanical properties of the main FRP composites used in reinforced concrete (RC) structures (i.e., Glass/vinyl-ester FRP bars and Carbon/epoxy FRP fabrics for internal and external application, respectively). The most likely sources and their effects on the physical/mechanical properties of FRP composites are highlighted herein. In general, no more than 20% tensile strength was reported in the literature for the different exposures without combined effects. Additionally, some provisions for the serviceability design of FRP-RSC elements (e.g., environmental factors, creep reduction factor) are examined and commented upon to understand the implications of the durability and mechanical properties. Furthermore, the differences in serviceability criteria for FRP and steel RC elements are highlighted. Through familiarity with their behavior and effects on enhancing the long-term performance of RSC elements, it is expected that the results of this study will help in the proper use of FRP materials for concrete structures.

8.
Materials (Basel) ; 16(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36676352

RESUMO

In the case of concrete sustainability, two main ways are generally discussed: (1) the reduction of natural raw materials and (2) the reduction of emissions related to concrete production. Following the second point, there have not yet been reported clear results. This problem is not given enough attention in present publications. This study brings a general view of this issue and a basic comparison with common concrete and traditional reinforcement. This case study deals with the life cycle analysis of a concrete slab made of recycled aggregate concrete with a fine recycled aggregate. The concrete slab was designed according to the limit states of load-bearing capacity and serviceability, which is based on the experimental verification of recycled aggregate concrete properties. Two different reinforcements are compared: (1) ordinary reinforcement by steel bars and (2) glass fibers. Furthermore, scenarios vary due to the slab thickness and reinforcement percentage. The results show the positive environmental impact of replacing natural sand with a fine recycled aggregate. The reduction of climate change potential can be almost 40% in some cases.

9.
Polymers (Basel) ; 14(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35746089

RESUMO

Serviceability limit states are very important in the design of reinforced concrete elements but they are complex to calculate. Simplified serviceability calculations are provided in EN 1992-1-1 (2013) for steel reinforced elements. The crack widths are assumed to be acceptable if the bar diameters or bar spacings are not too large, while deflections are acceptable if the slenderness is not too large. In recent decades, FRP bars have become an adequate replacement for steel bars, especially in aggressive environments. The calculation procedures for FRP-reinforced concrete elements (FRPRC) were developed from calculation methods for steel reinforced elements. The first part of this paper demonstrates the procedures and parametric investigation for calculating the maximum bar diameter and bar spacing for the purpose of controlling the crack width, focusing on calculations for the maximum bar diameter for which cracks widths are acceptable. The second part of the paper demonstrates the procedures and parametric calculations for the slenderness limits for concrete elements reinforced with FRP bars in order to satisfy the usual deflection limits. Due to the different modulus of elasticity values of FRP and steel, the tables used for steel cannot be used for concrete beams reinforced with FRP bars. Therefore, new tables and diagrams are proposed in the paper. The new tables and diagrams for the maximum allowable bar diameters for the different modulus of elasticity values of FRP can be useful for the rapid control of the crack width in FRPRC elements. They are conservative compared to the exact calculations because some assumptions taken in the calculations are different to those taken in the exact calculation procedure for the crack width. The results of parametric calculations for the slenderness limits for FRPRC elements are provided in the form of a diagram for different concrete classes. Satisfying the slenderness from these curves will result in a smaller deflection than that allowed for each parameter related to that class of concrete.

10.
Polymers (Basel) ; 14(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36501548

RESUMO

This paper presents a new bridge deck reinforcement alternative using hybrid reinforced concrete (Hybrid) consisting of Glass Fiber Reinforced Polymer (GFRP) rebar and alkali-resistant fiberglass composite macrofibers added to the concrete mixture. Fiberglass composite macrofibers are a miniaturized GFRP reinforcing bar that is a composite of resin and glass fibers. An experimental testing program and analytical modeling were conducted to evaluate the structural performance at the service and ultimate limit states. Thirteen full-scale bridge deck specimens were constructed and tested under static and fatigue loading. The fatigue loading was applied up to two million cycles at a frequency of 4 Hz. Post-fatigue, the specimens were tested to failure to compare pre-and post-fatigue behavior. Simplified and moment-curvature analytical models were used to predict the specimens' flexural strength at the ultimate level, and both were found to be accurate for predicting pre- and post-fatigue strength. Deflection and crack width were monitored throughout the fatigue loading, and these values were compared to the recommended AASHTO LRFD serviceability limits. Testing and analytical results showed that the Hybrid deck is a viable alternative to steel-reinforced and GFRP-reinforced bridge decks for flexural behavior. The service and ultimate level behavior of each bridge deck type was adequate as compared to the AASHTO LRFD service limits. The exceptional post-peak energy absorption demonstrated by the Hybrid adds ductility to previously elastic GFRP reinforced sections.

11.
Materials (Basel) ; 15(7)2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35407985

RESUMO

"Polyurea coatings as a possible structural reinforcement system" is a research investigation that aims to explore the possible applications of polyurea coatings for improving structural performance (including steel, concrete, timber and other structures used in the construction industry). As part of the research in this field, this paper focuses on evaluating the performance of bending polyurea-coated reinforced concrete (RC) beams with a low reinforcement ratio. The easy application and numerous advantages of polyurea can prove very useful when existing RC structural elements are repaired or retrofitted. Laboratory tests of RC beams were performed for the purpose of this paper. The failure mechanisms and cracking patterns of these specimens are described, and their bending strengths were compared. On this basis, the effect of the coating on bending strength and the performance of the reinforced beams at the serviceability limit state (SLS) was examined and analyzed. The results showed that the use of a polyurea coating has a positive impact on the cracking and deflection state of RC beams and makes it possible to safely use RC elements on a continuous basis under high levels of load.

12.
Materials (Basel) ; 14(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34947224

RESUMO

Limited deflection of structural members represents an important requirement to guarantee proper functionality and appearance of building and infrastructures. According to Eurocodes, this requirement is ensured by limiting the maximum deflection of horizontal structural members to a fraction of their span. However, each Eurocode provides different maximum deflection limits, which are independent of the type of superstructures considered. Thus, the respect of these limits may not always guarantee the integrity of certain superstructures. In this paper, the reliability of the Eurocode deflection control methods, in guaranteeing the integrity of the superstructures, is assessed and discussed. First, different types of horizontal member, namely rib and clay (hollow) pot, composite steel-concrete, and timber beam slabs are designed to respect the deflection limit enforced by the Eurocodes. Then, the maximum curvature developed by these members is compared with the ultimate (limit) curvatures of various superstructures (e.g., ceramic and stone tile floorings). The results obtained show that the approach adopted by Eurocode 2 may provide non-conservative results, but also that the rules proposed by Eurocodes 4 and 5, albeit more reliable, do not always guarantee the integrity of the superstructure. Based on these results, an alternative method, based on the curvature control, is proposed and its advantages and limitations critically discussed. This method appears simpler and more reliable than the method currently adopted by the Eurocodes.

13.
Materials (Basel) ; 14(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34639925

RESUMO

In this paper, Numpress Explore software, developed at the Institute of Fundamental Technological Research of the Polish Academy of Sciences (IPPT PAN), was used to conduct reliability analyses. For static-strength calculations, the MES3D module, designed by the authors, was employed. Ultimate limit state was defined as condition of non-exceedance of the capacity value, resulting from the stability criterion of the bent and compressed element. The serviceability limit state was defined as the condition of non-exceedance of allowable vertical displacement. The above conditions constitute implicit forms of random variable functions; therefore, it was necessary to build an interface between the Numpress Explore and MES3D programs. In the study, a comparative analysis of two cases was carried out. As regards the first case, all adopted random variables had a normal distribution. The second case involved a more accurate description of the quantities mentioned. A normal distribution can be adopted for the description of, e.g., the randomness in the location of the structure nodes, and also the randomness of the multiplier of permanent loads. In actual systems, the distribution of certain loads deviates substantially from the Gaussian distribution. Consequently, adopting the assumption that the loads have a normal distribution can lead to gross errors in the assessment of structural safety. The distribution of loads resulting from atmospheric conditions is decidedly non-Gaussian in character. The Gumbel distribution was used in this study to describe snow and wind loads. The modulus of elasticity and cross-sectional area were described by means of a log-normal distribution. The adopted random variables were independent. Additionally, based on an analysis of the elasticity index, the random variables most affect the failure probability in the ultimate limit state and serviceability limit state were estimated.

14.
Materials (Basel) ; 14(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500953

RESUMO

The increasing demand on the performance of existing structures, together with their degradation, is among the main drivers towards the development of innovative strengthening solutions. While such solutions are generally aimed at increasing the load-bearing capacity of structural elements, serviceability limit states also play an important role in ensuring the performance and durability of the structure. An experimental campaign was performed to assess the cracking behaviour of reinforced concrete beams strengthened with different typologies of Textile-Reinforced Concrete. The specimens were monitored using Digital Image Correlation (DIC) technology in order to obtain a quantitative evaluation of the evolution of the crack pattern throughout the whole test. Results show the beneficial effects of this retrofitting strategy both at ultimate limit states and serviceability limit states, provide detailed insights on the progression of damage in the specimens and highlight how different parameters impact the cracking behaviour of the tested elements.

15.
Materials (Basel) ; 14(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467035

RESUMO

A new type of composite voided slab, the TUBEDECK (TD), which utilizes the structural function of profiled steel decks, has recently been proposed. Previous studies have confirmed that the flexural strength of TD slabs can be calculated based on the full composite contribution of the steel deck, but for long-span flexural members, the deflection serviceability requirement is often dominant. Herein, we derived a novel deflection prediction approach using the results of flexural tests on slab specimens, focusing on TD slabs. First, deflection prediction based on modifications of the current code was proposed. Results revealed that TD slabs exhibited smaller long-term deflections and at least 10% longer maximum span lengths than solid slabs, indicating their greater efficiency. Second, a novel rational method was derived for predicting deflections without computing the effective moment of inertia. The ultimate deflections predicted by the proposed method correlated closely with the deflection under maximum bending moments. To calculate immediate deflections, variation functions for the concrete strain at the extreme compression fiber and neutral axis depth were assumed with predictions in good agreement with experiments. The proposed procedure has important implications in highlighting a new perspective on the deflection prediction of reinforced concrete and composite flexural members.

16.
Materials (Basel) ; 13(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348624

RESUMO

Studies on novel composite structures that can decrease floor height and improve constructional efficiency in order to increase spatial efficiency and lease revenue have been actively conducted. An innovative fire-proof, lightweight, absorbed, shallow, and hybrid (iFLASH) system was developed to solve construction site issues, such as improving constructability, reducing construction time, and attaining structural efficiency by reducing the weight of the building structure. This system can shorten the construction duration and decrease the floor height and structural weight, owing to features such as a low thickness and light weight. However, studies on the vibration characteristics of this new floor system have not been performed yet. As the general thickness of the iFLASH system ranges from 25 to 30 mm, it must have a sufficient floor vibration performance in order to be utilized. To evaluate the floor vibration performance of the iFLASH system, an experiment was performed in two buildings where the system was applied. This paper presents the results of the dynamic characteristics and serviceability testing as basic data for the vibration characteristics of the iFLASH system.

17.
Accid Anal Prev ; 127: 172-176, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30893576

RESUMO

Road engineers have special responsibilities to design and maintain roads that are safe, secure, and serviceable. This paper explores some of the challenges such responsibilities pose, especially from the vantage point of non-engineers whose lives are deeply affected by the work of road engineers. It also supports the thesis that road engineers need to be prepared to consult and work with professionals in other fields than engineering in order to fulfill their responsibilities well.


Assuntos
Ambiente Construído/normas , Engenharia/normas , Segurança/normas , Acidentes de Trânsito/prevenção & controle , Humanos
18.
Polymers (Basel) ; 10(2)2018 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-30966181

RESUMO

The near surface mounted (NSM) technique has been shown to be one of the most promising methods for upgrading reinforced concrete (RC) structures. Many tests carried out on RC members strengthened in flexure with NSM fiber-reinforced polymer (FRP) systems have demonstrated greater strengthening efficiency than the use of externally-bonded (EB) FRP laminates. Strengthening with simultaneous pretensioning of the FRP results in improvements in the serviceability limit state (SLS) conditions, including the increased cracking moment and decreased deflections. The objective of the reported experimental program, which consisted of two series of RC beams strengthened in flexure with NSM CFRP strips, was to investigate the influence of a number of parameters on the strengthening efficiency. The test program focused on an analysis of the effects of preloading on the strengthening efficiency which has been investigated very rarely despite being one of the most important parameters to be taken into account in strengthening design. Two preloading levels were considered: the beam self-weight only, which corresponded to stresses on the internal longitudinal reinforcement of 25% and 14% of the yield stress (depending on a steel reinforcement ratio), and the self-weight with the additional superimposed load, corresponding to 60% of the yield strength of the unstrengthened beam and a deflection equal to the allowable deflection at the SLS. The influence of the longitudinal steel reinforcement ratio was also considered in this study. To reflect the variability seen in existing structures, test specimens were varied by using different steel bar diameters. Finally, the impact of the composite reinforcement ratio and the number of pretensioned FRP strips was considered. Specimens were divided into two series based on their strengthening configuration: series "A" were strengthened with one pretensioned and two non-pretensioned carbon FRP (CFRP) strips, while series "B" were strengthened with two pretensioned strips. Experimental tests illustrated promising results at ultimate and serviceability limit state conditions. A significant gain of the load bearing capacity, in the range between 56% and 135% compared to the unstrengthened beams, was obtained. Tensile rupture of the NSM CFRP strips was achieved, confirming full utilization of the material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA