Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Water Sci Technol ; 90(1): 190-212, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39007314

RESUMO

Numerous countries and regions have embraced implementing a separate sewer system, segregating sanitary and storm sewers into distinct systems. However, the functionality of these systems often needs to improve due to irregular interconnections, resulting in a mixed and malfunctioning system. Sewage collection is crucial for residential sanitation, but untreated collection significantly contributes to environmental degradation. Analyzing the simultaneous operation of both systems becomes vital for effective management. Using mathematical tools for precise and unified diagnosis and prognosis becomes imperative. However, municipal professionals and companies need more tools specifically designed to evaluate these systems in a unified way, mapping all the hydraulic connections observed in practice. This study proposes a unified simulation method for stormwater and sanitary sewer urban systems, addressing real-world scenarios and potential interferences. The primary goal is to develop a simulation method for both systems, considering system interconnections and urban layouts, involving hydrodynamic and water quality simulations. The practical application of this method, the Multilayer Hydrodynamic Simulation Method (MODCEL-MHUS), successfully identifies issues in urban water networks and suggests solutions, making it a valuable tool for urban water management and environmental engineering professionals.


Assuntos
Hidrodinâmica , Chuva , Esgotos , Drenagem Sanitária , Cidades , Modelos Teóricos , Eliminação de Resíduos Líquidos/métodos , Simulação por Computador , Movimentos da Água
2.
J Environ Manage ; 301: 113810, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731959

RESUMO

Sewer networks play a pivotal role in our everyday lives by transporting the stormwater and urban sewage away from the urban areas. In this regard, Sewer Overflow (SO) has been considered as a detrimental threat to our environment and health, which results from the wastewater discharge into the environment. In order to grapple with such deleterious phenomenon, numerous studies have been conducted; however, there has not been any review paper that provides the researchers undertaking research in this area with the following inclusive picture: (1) detailed-scientometric analysis of the research undertaken hitherto, (2) the types of methodologies used in the previous studies, (3) the aspects of environment impacted by the SO occurrence, and (4) the gaps existing in the relative literature together with the potential future works to be undertaken. Based on the comprehensive review undertaken, it is observed that simulation and artificial intelligence-based methods have been the most popular approaches. In addition, it has come to the attention that the detrimental impacts associated with the SO are fourfold as follows: air, quality of water, soil, and business and structure. Among these, the majority of the studies' focus have been tilted towards the impact of SO on the quality of ground water. The outcomes of this state-of-the-art review provides the researchers and environmental engineers with inclusive hindsight in dealing with such serious issue, which in turn, this culminates in a significant improvement in our environment as well as humans' well-beings.


Assuntos
Inteligência Artificial , Água Subterrânea , Humanos , Esgotos , Águas Residuárias
3.
J Environ Manage ; 166: 294-308, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26517278

RESUMO

Hydraulic, sanitary, and sulfide control conditions of inverted siphons, particularly in large wastewater systems, can be substantially improved by continuous air injection in the base of the inclined rising branch. This paper presents a simplified approach that was developed for the two-phase flow of the rising branch using the energy equation for a steady pipe flow, based on the average fluid fraction, observed slippage between phases, and isothermal assumption. As in a conventional siphon design, open channel steady uniform flow is assumed in inlet and outlet chambers, corresponding to the wastewater hydraulic characteristics in the upstream and downstream sewers, and the descending branch operates in steady uniform single-phase pipe flow. The proposed approach is tested and compared with data obtained in an experimental siphon setup with two plastic barrels of different diameters operating separately as in a single-barrel siphon. Although the formulations developed are very simple, the results show a good adjustment for the set of the parameters used and conditions tested and are promising mainly for sanitary siphons with relatively moderate heights of the ascending branch.


Assuntos
Gerenciamento de Resíduos/métodos , Hidrodinâmica , Modelos Teóricos , Esgotos , Sulfetos , Gerenciamento de Resíduos/instrumentação , Águas Residuárias/química
4.
J Environ Manage ; 155: 193-203, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25840844

RESUMO

The design of sewer system control is a complex task given the large size of the sewer networks, the transient dynamics of the water flow and the stochastic nature of rainfall. This contribution presents a generic methodology for the design of a self-optimising controller in sewer systems. Such controller is aimed at keeping the system close to the optimal performance, thanks to an optimal selection of controlled variables. The definition of an optimal performance was carried out by a two-stage optimisation (stochastic and deterministic) to take into account both the overflow during the current rain event as well as the expected overflow given the probability of a future rain event. The methodology is successfully applied to design an optimising control strategy for a subcatchment area in Copenhagen. The results are promising and expected to contribute to the advance of the operation and control problem of sewer systems.


Assuntos
Planejamento de Cidades , Tomada de Decisões , Chuva , Esgotos , Humanos , Modelos Teóricos , Movimentos da Água
5.
J Environ Manage ; 161: 188-197, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26182992

RESUMO

Ever since the advent of major sewer construction in the 1850s, the issue of increased solids deposition in sewers due to changes in domestic wastewater inputs has been frequently debated. Three recent changes considered here are the introduction of kitchen sink food waste disposers (FWDs); rising levels of inputs of fat, oil and grease (FOG); and the installation of low-flush toilets (LFTs). In this review these changes have been examined with regard to potential solids depositional impacts on sewer systems and the managerial implications. The review indicates that each of the changes has the potential to cause an increase in solids deposition in sewers and this is likely to be more pronounced for the upstream reaches of networks that serve fewer households than the downstream parts and for specific sewer features such as sags. The review has highlighted the importance of educational campaigns directed to the public to mitigate deposition as many of the observed problems have been linked to domestic behaviour in regard to FOGs, FWDs and toilet flushing. A standardized monitoring procedure of repeat sewer blockage locations can also be a means to identify depositional hot-spots. Interactions between the various changes in inputs in the studies reviewed here indicated an increased potential for blockage formation, but this would need to be further substantiated. As the precise nature of these changes in inputs have been found to be variable, depending on lifestyles and type of installation, the additional problems that may arise pose particular challenges to sewer operators and managers because of the difficulty in generalizing the nature of the changes, particularly where retrofitting projects in households are being considered. The three types of changes to inputs reviewed here highlight the need to consider whether or not more or less solid waste from households should be diverted into sewers.


Assuntos
Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Purificação da Água/métodos , Utensílios Domésticos , Humanos , Modelos Teóricos , Eliminação de Resíduos Líquidos/instrumentação , Movimentos da Água
6.
Water Res ; 253: 121284, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367376

RESUMO

Green stormwater infrastructure (GSI) is growing in popularity to reduce combined sewer overflows (CSOs) and hydrologic simulation models are a tool to assess their reduction potential. Given the numerous and interacting water flows that contribute to CSOs, such as evapotranspiration (ET) and groundwater (GW), these models should ideally account for them. However, due to the complexity, simplified models are often used, and it is currently unknown how these assumptions affect estimates of CSOs, GSI effectiveness, and ultimately planning guidance. This study evaluates the effect on estimates of CSOs and GSI effectiveness when different flows and hydrologic processes are neglected. We modified an existing EPA SWMM model of a combined sewer system in Switzerland to include ET, GW, and upstream inflows. Historical rainfall data over 30 years are used to assess volume and duration of CSOs with and without three types of GSI (bioretention basins, permeable pavements and green roofs). Results demonstrate that neglect of certain flows in modelling can alter CSO volumes from -15 % to 40 %. GSI effectiveness also varies considerably, resulting in differences in simulated percent of CSO volume reduced from 8 % to 35 %, depending on the GSI type and modeled flow or process. Representation of GW within models is particularly crucial when infiltrating GSI are present, as CSOs could increase in certain subcatchments due to higher GW levels from increased infiltration. When basing GSI planning decisions on modeled estimates of CSOs, all relevant hydrologic processes should be included to the extent possible, and uncertainty and assumptions should always be considered.


Assuntos
Água Subterrânea , Simulação por Computador , Água , Hidrologia , Suíça , Chuva , Esgotos/química
7.
Sci Total Environ ; 952: 175929, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39226960

RESUMO

The scouring and migration of sediments in sewer systems are the key contributors to overflow pollution. Both physical and biological factors affect the erosion and migration of layered sediments. However, the functional characteristics of these factors and their quantification process still need to be further explored. In this study, the physical form and biological metabolism of the sediment are coupled, and the suspension mechanism under the dual action is proposed systematically and deeply. The influence coefficient of scour initiation was redefined as A^/prime, where the physical factors were particle size and mass, and the biological factors were bio-viscosity and internal cavitation. The bio-viscosity of layered sediment particles is provided by Extracellular Polymeric Substances (EPS). The slope value of |ΔD/-Δf| (ΔD: Dissipation; Δf: frequency) of surface EPS decreased from 0.489 to 0.315 when Quartz Crystal Microbalance with Dissipation (QCM-D) was used to analyse EPS viscosity, indicating that biological activities formed a dense biofilm on the sediment surface and enhanced the bond between particles. Meanwhile, by monitoring the accumulation density of sediments at different depths, it was found that the packing density of the bottom layer decreased from 1.50 to 1.45 g/cm3, which was mainly due to the internal cavitation caused by microorganism consuming organic matrix and releasing H2S and CH4. The delamination difference of EPS results in the uneven change of adhesion between different layers. This, combined with the internal erosion characteristics triggered by microbial stratified metabolism, collectively constitutes the biological effects on the sediment structure. Finally, the coupling mechanism of particle distribution and bio-viscous-cavitation erosion was formed, and the correctness of the formula was verified by repeated experiments, which proved the agreement between the theory and the practice and provided a scientific method for systematically analysing the erosion and migration law of sediment in the sewer system.

8.
Sci Total Environ ; 939: 173595, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38810738

RESUMO

Several studies have reported vapor intrusion (VI) occurring when volatile organic compound (VOC) vapors are transported through subsurface piping systems into building spaces (e.g. conduit VI). Site-specific risk assessment and risk management practices are complicated and evolving for conduit VI, especially at large hazardous waste sites, like Superfund sites, where many stakeholders are involved and have varied interests. Here, we propose a social ecological system (SES) framework as a decision-making tool to inform risk mitigation decisions. We demonstrate the SES framework using field data associated with a Superfund site near San Francisco, California. We evaluate sewer invert elevation and groundwater elevation data, as well as pre- and post- mitigation VOC concentration data within a sewer system. Unexpectedly, the sewer located above the groundwater table was determined to be a potential source of conduit VI risks. The SES framework describes how typical stakeholders associated with the site can affect and be affected by mitigation activities. It informs decisions about mitigation implementation and long-term operation efficacy by considering stakeholder roles and interests. Ultimately, gas siphons were selected as the mitigation technology for the example site. To date, approximately 6 gas siphons have been installed to mitigate conduit VI risks throughout the community. Collectively, our findings advance risk management decisions and highlight key considerations for risk mitigation approaches at hazardous waste sites, including Superfund sites, especially where VI risks are a concern.

9.
Ann Agric Environ Med ; 30(4): 677-684, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38153071

RESUMO

INTRODUCTION AND OBJECTIVE: The article analyzes the content of heavy metals and standard physical as well as chemical pollution indicators in different types of sediments from stormwater, combined sewer and sanitary sewer systems. MATERIAL AND METHODS: Nickel, lead, chromium, copper, zinc and cadmium, as well as standard physical and chemical pollution indicators, were determined in sewage sediments. Aqueous extracts of sediments samples, taken from storm water sewer inlet sediments traps, storm sewers, sanitary sewers and combined sewers, were prepared in accordance with PN-EN 12457-2:2006. After mineralization, the concentrations of the metals: nickel, lead, chromium, copper, zinc and cadmium in the extracts were determined using the inductively coupled plasma emission spectroscopy technique. RESULTS: The results were analyzed with a non-metric multidimensional scaling algorithm. The heavy metal content was variable depending on the sediments collection site. The heavy metals nickel, lead, chromium, copper, zinc and cadmium were found in the sediments from stormwater inlets, storm sewer and sanitary sewer channels, with variability in the concentration of individual metals. The sediments from the flushing of sanitary sewers and combined sewers did not contain cadmium. CONCLUSIONS: The content of heavy metals in sediments varied depending on the sampling location and type of sewer system, indicating the need for detailed monitoring to identify the sources of emissions. Sediments from stormwater sewers have higher concentrations of heavy metals, with those from sewer inlets showing zinc concentrations exceeding regulatory limits, highlighting the variability and potential environmental impact of different sewer systems.


Assuntos
Cobre , Metais Pesados , Cobre/análise , Cádmio/análise , Níquel , Saúde Pública , Sedimentos Geológicos/química , Monitoramento Ambiental , Zinco/análise , Cromo
10.
mSystems ; 7(5): e0065122, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36121163

RESUMO

Wastewater microbial communities are not static and can vary significantly across time and space, but this variation and the factors driving the observed spatiotemporal variation often remain undetermined. We used a shotgun metagenomic approach to investigate changes in wastewater microbial communities across 17 locations in a sewer network, with samples collected from each location over a 3-week period. Fecal material-derived bacteria constituted a relatively small fraction of the taxa found in the collected samples, highlighting the importance of environmental sources to the sewage microbiome. The prokaryotic communities were highly variable in composition depending on the location within the sampling network, and this spatial variation was most strongly associated with location-specific differences in sewage pH. However, we also observed substantial temporal variation in the composition of the prokaryotic communities at individual locations. This temporal variation was asynchronous across sampling locations, emphasizing the importance of independently considering both spatial and temporal variation when assessing the wastewater microbiome. The spatiotemporal patterns in viral community composition closely tracked those of the prokaryotic communities, allowing us to putatively identify the bacterial hosts of some of the dominant viruses in these systems. Finally, we found that antibiotic resistance gene profiles also exhibit a high degree of spatiotemporal variability, with most of these genes unlikely to be derived from fecal bacteria. Together, these results emphasize the dynamic nature of the wastewater microbiome, the challenges associated with studying these systems, and the utility of metagenomic approaches for building a multifaceted understanding of these microbial communities and their functional attributes. IMPORTANCE Sewage systems harbor extensive microbial diversity, including microbes derived from both human and environmental sources. Studies of the sewage microbiome are useful for monitoring public health and the health of our infrastructure, but the sewage microbiome can be highly variable in ways that are often unresolved. We sequenced DNA recovered from wastewater samples collected over a 3-week period at 17 locations in a single sewer system to determine how these communities vary across time and space. Most of the wastewater bacteria, and the antibiotic resistance genes they harbor, were not derived from human feces, but human usage patterns did impact how the amounts and types of bacteria and bacterial genes we found in these systems varied over time. Likewise, the wastewater communities, including both bacteria and their viruses, varied depending on location within the sewage network, highlighting the challenges and opportunities in efforts to monitor and understand the sewage microbiome.


Assuntos
Microbiota , Esgotos , Humanos , Esgotos/microbiologia , Águas Residuárias , Universidades , Microbiota/genética , Metagenoma/genética , Bactérias/genética
11.
Water Res ; 217: 118394, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35430466

RESUMO

Pollution levels in stormwater vary significantly during rain events, with pollutant flushes carrying a major fraction of an event pollutant load in a short period. Understanding these flushes is thus essential for stormwater management. However, current studies mainly focus on describing the first flush or are limited by predetermined flush categories. This study provides a new perspective on the topic by applying data-driven approaches to categorise Mass Volume (MV) curves for TSS into distinct classes of flush tailored to specific monitoring location. Functional Data Analysis (FDA) was used to investigate the dynamics of MV curves in two large data sets, consisting of 343 measured events and 915 modelled events, respectively. Potential links between classes of MV curves and combinations of rain characteristics were explored through a priori clustering. This yielded correct class assignments for 23-63% of the events using different combinations of MV curve clustering and rainfall characteristics. This suggests that while global rainfall characteristics influence flush, they are not sufficient as sole explanatory variables of different flush phenomena, and additional explanatory variables are needed to assign MV curves into classes with a predictive power that is suitable for e.g. design of stormwater control measures. Our results highlight the great potential of the FDA methodology as a new approach for classifying, describing, and understanding pollutant flush signals in stormwater.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Análise de Dados , Monitoramento Ambiental , Poluentes Ambientais/análise , Chuva , Movimentos da Água , Poluentes Químicos da Água/análise
12.
Sci Total Environ ; 837: 155664, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35526635

RESUMO

Wastewater surveillance for infectious disease expanded greatly during the COVID-19 pandemic. As a collaboration between sanitation engineers and scientists, the most cost-effective deployment of wastewater surveillance routinely tests wastewater samples from wastewater treatment plants. To evaluate the capacity of treatment plants of different sizes and characteristics to participate in surveillance efforts, we developed and distributed a survey to New York State municipal treatment plant supervisors in the summer and fall of 2021. The goal of the survey was to assess the knowledge, capacity, and attitudes toward wastewater surveillance as a public health tool. Our objectives were to: (1) determine what treatment plant operators know about wastewater surveillance for public health; (2) assess how plant operators feel about the affordability and benefits of wastewater surveillance; and (3) determine how frequently plant personnel can take and ship samples using existing resources. Results show that 62% of respondents report capacity to take grab samples twice weekly. Knowledge about wastewater surveillance was mixed with most supervisors knowing that COVID-19 can be tracked via wastewater but having less knowledge about surveillance for other public health issues such as opioids. We found that attitudes toward wastewater testing for public health were directly associated with differences in self-reported capacity of the plant to take samples. Further, findings suggest a diverse capacity for sampling across sewer systems with larger treatment plants reporting greater capacity for more frequent sampling. Findings provide guidance for outreach activities as well as important insight into treatment plant sampling capacity as it is connected to internal factors such as size and resource availability. These may help public health departments understand the limitations and ability of wastewater surveillance for public health benefit.


Assuntos
COVID-19 , Purificação da Água , COVID-19/epidemiologia , Humanos , New York/epidemiologia , Pandemias , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
13.
Water Res ; 189: 116639, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33227613

RESUMO

Sediment transport in sewers has been extensively studied in the past. This paper aims to propose a new method for predicting the self-cleansing velocity required to avoid permanent deposition of material in sewer pipes. The new Random Forest (RF) based model was implemented using experimental data collected from the literature. The accuracy of the developed model was evaluated and compared with ten promising literature models using multiple observed datasets. The results obtained demonstrate that the RF model is able to make predictions with high accuracy for the whole dataset used. These predictions clearly outperform predictions made by other models, especially for the case of non-deposition with deposited bed criterion that is used for designing large sewer pipes. The volumetric sediment concentration was identified as the most important parameter for predicting self-cleansing velocity.


Assuntos
Projetos de Pesquisa , Esgotos
14.
Water Environ Res ; 92(12): 2030-2040, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32510735

RESUMO

Water, energy, and food are key resources that could easily limit sustainability of human society development. Water supply requires considerable amounts of energy, and "usedwater" carries considerable amounts of embedded energy and recoverable materials within. Usedwater is increasingly considered as a potential resource, rather than as a waste. Among process technology options that may allow efficient recovery of that energy, anaerobic digestion could be considered the most mature, already sporting countless applications worldwide. However, the present inefficient dilution-base collection systems paradigm produces rather dilute sewage, preventing to a large degree a more efficient application of this technology. A new collection system paradigm, based on liquid sources segregation and minimal organics dilution, could result in significant energy savings for conveyance and treatment. This could also enhance recovery of nutrients and reclamation of potentially reusable water, with the associated benefit of reduced production of process residuals requiring further disposal. Implications of this model are discussed. PRACTITIONER POINTS: The nexus between water, energy, and food is an impending challenge on water cycle sustainability Current paradigms of urban water management are based on disadvantageous paradigms: high dilution and gravity flow Taking the water out of wastewater may improve energy and recovery efficiency of urban water systems and water reuse options Technologies exist (high-rate anaerobic, vacuum sewers) and are mature for more widespread application of new urban sanitation paradigms.


Assuntos
Águas Residuárias , Água , Humanos , Saneamento , Esgotos , Eliminação de Resíduos Líquidos , Ciclo Hidrológico
15.
Environ Int ; 131: 105011, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31374444

RESUMO

Mega-sized deep tunnel sewer systems are indispensable infrastructures to convey the sewage and/or stormwater to the centralized sewage treatment works in large cities with dense populations and limited land. The rapid urbanization in China and other countries is boosting the construction of the deep tunnel sewer systems. However, the formation of sulfide, which induces serious odor nuisance and sewer corrosion, has not been investigated in such sewer systems. Taking a real Sewage Conveyance System (SCS) with 23.3 km-long and 70-160 m-deep interconnected tunnels in Hong Kong as a representative example, this study conducted experimental and modelling investigations to evaluate the sulfide formation in the mega-sized deep tunnel sewer systems. The field investigation revealed that the daily sulfide production rate in the SCS was up to 1410 kg S/d, suggesting the substantial sulfide production during the long-distance and long-time sewage conveyance. Using a validated Biofilm-Initiated Sewer Process Model (BISM), the sulfide formation in the SCS under the influences of various factors, which are relevant to the situations in China and other countries, were simulated. The simulation results showed that 89% of the total sulfide production in the SCS was generated in the two tunnels with long hydraulic retention times (HRT) and large flowrates. The specific sulfide formation rates exhibited a linear relationship with HRT (R2 = 0.61), but the linear relationship with the sewer diameter was weak. The sulfide production rate increased with increasing temperature (12 °C-32 °C) by 3.5 times, and it only decreased by 50% when the sulfate concentration decreased from 309 to 17 mg S/L, indicating that serious sulfide pollution could still happen in the sewers with a low concertation of sulfate in sewage. Increasing the organic levels in sewage would also promote the sulfide production in sewers. The flowrate would not influence the sulfide production rate significantly, but a storm event could remarkably reduce the sulfide production in rainy days. The findings unveil the potential serious sulfide problems in the mega-sized deep tunnel sewer systems, which are being increasingly constructed in China and other countries. To mitigate the odor and corrosion problems in the deep tunnel sewer systems, the sulfide control strategies should be considered during the sewer design and management.


Assuntos
Esgotos/química , Sulfetos/química , Biofilmes , Sulfatos/química , Temperatura
16.
Sci Total Environ ; 616-617: 1149-1162, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29146079

RESUMO

Sewer systems have been recently recognized as potentially important exposure pathways to consider during vapor intrusion assessments; however, this pathway has not been well-characterized and there is need for additional information about the occurrence of volatile organic compounds (VOCs) in sewer systems. This paper reports the results of sewer gas sampling conducted in a sanitary sewer over the years of 2014-2017. Sewer gas samples were collected and analyzed using several different techniques, including TO-15 (grab), TO-17 (passive), Radiello® (passive) and a novel continuous monitoring technique, the Autonomous Rugged Optical Multigas Analyzer (AROMA). The applicability of each of the different approaches used in this study is discussed in the context of investigating sanitary sewers as a vapor intrusion alternative pathway. The data confirmed that trichloroethylene (TCE) concentrations in sewer gas were detected adjacent to and extending hundreds of feet away from a previously defined vapor intrusion area, where TCE was a primary contaminant. TCE concentrations detected in sewer gas ranged from non-detect to 1600µg/m3. Temporal variability was observed in TCE concentrations over timescales that ranged from minutes to months to years at discrete sampling locations. Spatial variability in sewer gas concentrations was also observed throughout the study area. Temporal and spatial variability may be caused by groundwater contamination sources in the study area, as well as sewer gas transport mechanisms.

17.
Water Res ; 135: 302-310, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29477793

RESUMO

Water utilities worldwide spend annually billions of dollars to control sulfide-induced corrosion in sewers. Iron salts chemically oxidize and/or precipitate dissolved sulfide in sewage and are especially used in medium- and large-size sewers. Iron salt dosing rates are defined ad hoc, ignoring variation in sewage flows and sulfide levels. This often results in iron overdosing or poor sulfide control. Online dosing control can adjust the chemical dosing rates to current (and future) state of the sewer system, allowing high-precision, stable and cost-effective sulfide control. In this paper, we report a novel and robust online control strategy for the dosing of ferrous salt in sewers. The control considers the fluctuation of sewage flow, pH, sulfide levels and also the perturbation from rainfall. Sulfide production in the pipe is predicted using auto-regressive models (AR) based on current flow measurements, which in turn can be used to determine the dose of ferrous salt required for cost-effective sulfide control. Following comprehensive model-based assesment, the control was successfully validated and its effectiveness demonstrated in a 3-week field trial. The online control algorithm controlled sulfide below the target level (0.5 mg S/L) while reducing chemical dosing up to 30%.


Assuntos
Algoritmos , Compostos Ferrosos/química , Esgotos/química , Sulfetos/química , Austrália , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Oxirredução , Reprodutibilidade dos Testes
18.
Water Res ; 115: 149-161, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28279936

RESUMO

Government bodies, utilities, practitioners, and researchers have growing interest in the incorporation of resilience into wastewater management. Since resilience is a multidisciplinary term, it is important to review what has been achieved in the wastewater sector, and describe the future research directions for the forthcoming years. This work presents a critical review of studies that deal with resilience in the wastewater treatment sector, with a special focus on understanding how they addressed the key elements for assessing resilience, such as stressors, system properties, metrics and interventions to increase resilience. The results showed that only 17 peer-reviewed papers and 6 relevant reports, a small subset of the work in wastewater research, directly addressed resilience. The lack of consensus in the definition of resilience, and the elements of a resilience assessment, is hindering the implementation of resilience in wastewater management. To date, no framework for resilience assessment is complete, comprehensive or directly applicable to practitioners; current examples are lacking key elements (e.g. a comprehensive study of stressors, properties and metrics, examples of cases study, ability to benchmark interventions or connectivity with broader frameworks). Furthermore, resilience is seen as an additional cost or extra effort, instead of a means to overcome project uncertainty that could unlock new opportunities for investment.


Assuntos
Cidades , Águas Residuárias , Humanos , Incerteza
19.
Microbiologyopen ; 5(4): 616-25, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27063341

RESUMO

This study describes the temporal and spatial variability of bacterial communities within a combined sewer system in England. Sampling was conducted over 9 months in a sewer system with intensive monitoring of hydraulic conditions. The bacterial communities were characterized by 16S rRNA gene-targeted terminal restriction fragment length polymorphism analysis. These data were related to the hydraulic data as well as the sample type, location, and time. Temporal and spatial variation was observed between and within wastewater communities and biofilm communities. The bacterial communities in biofilm were distinctly different from the communities in wastewater and exhibited greater spatial variation, while the wastewater communities exhibited variability between different months of sampling. This study highlights the variation of bacterial communities between biofilm and wastewater, and has shown both spatial and temporal variations in bacterial communities in combined sewers. The temporal variation is of interest for in-sewer processes, for example, sewer odor generation, as field measurements for these processes are often carried out over short durations and may therefore not capture the influence of this temporal variation of the bacterial communities.


Assuntos
Bactérias/classificação , Bactérias/genética , Microbiota/genética , Esgotos/microbiologia , Biofilmes , Inglaterra , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA