Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 408
Filtrar
1.
J Exp Bot ; 75(13): 4074-4092, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38537200

RESUMO

Monoculture systems in South East Asia are facing challenges due to climate change-induced extreme weather conditions, leading to significant annual production losses in rice and oil palm. To ensure the stability of these crops, innovative strategies like resilient agroforestry systems need to be explored. Converting oil palm (Elaeis guineensis) monocultures to rice (Oryza sativa)-based intercropping systems shows promise, but achieving optimal yields requires adjusting palm density and identifying rice varieties adapted to changes in light quantity and diurnal fluctuation. This paper proposes a methodology that combines a model of light interception with indoor experiments to assess the feasibility of rice-oil palm agroforestry systems. Using a functional-structural plant model of oil palm, the planting design was optimized to maximize transmitted light for rice. Simulation results estimated the potential impact on oil palm carbon assimilation and transpiration. In growth chambers, simulated light conditions were replicated with adjustments to intensity and daily fluctuation. Three light treatments independently evaluated the effects of light intensity and fluctuation on different rice accessions. The simulation study revealed intercropping designs that significantly increased light transmission for rice cultivation with minimal decrease in oil palm densities compared with conventional designs. The results estimated a loss in oil palm productivity of less than 10%, attributed to improved carbon assimilation and water use efficiency. Changes in rice plant architecture were primarily influenced by light quantity, while variations in yield components were attributed to light fluctuations. Different rice accessions exhibited diverse responses to light fluctuations, indicating the potential for selecting genotypes suitable for agroforestry systems.


Assuntos
Arecaceae , Oryza , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Arecaceae/crescimento & desenvolvimento , Arecaceae/fisiologia , Agricultura Florestal/métodos , Agricultura/métodos , Modelos Biológicos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia
2.
Oecologia ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046508

RESUMO

Light availability and habitat complexity are two key drivers of community assembly. Urbanisation has been shown to affect both, with important consequences to ecological communities. On the intertidal, for instance, studies have shown that light intensity is greater on natural rocky shores than on less complex artificial habitats (seawalls), though different habitats can also experience similar light intensities, for example when shaded by urban structures. Understanding therefore how these factors individually, and combined, affect communities is important to understand the mechanisms driving changes in community structure, and consequently provide solutions to tackle the increasing homogenisation of habitats and lightscapes in urbanised spaces through smart infrastructure designs. Here, we assessed how different light levels affect the recruitment of communities in rock pools and on emergent rock on an intertidal rocky shore. We cleared 30 patches of emergent rock and 30 rock pools and manipulated light using shades with different light transmissions (full light, procedural control, 75%, 35%, and 15% light transmission, full shade) and assessed mobile and sessile communities monthly for 6 months. Effects of reducing light levels were generally stronger on rock than in pools. Fully shaded plots supported double the amount of mobile organisms than plots in full sunlight, in both habitats. Algal cover was higher in pools compared to rock, and at intermediate light levels, but effects varied with site. This study highlights the importance of variable light conditions and different habitats for rocky shore communities, which should be considered in future coastal developments to retain natural biodiversity.

3.
J Plant Res ; 137(2): 203-213, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281225

RESUMO

A newly found leaf arrangement to reduce self-shading was observed in a Japanese warm-temperate forest. For monoaxial trees that deploy leaves directly on a single stem, leaf arrangements involving progressive elongation of the petiole and progressive increase in deflection angle (the angle between stem and petiole) from the uppermost to the lowermost leaves act to reduce self-shading. However, the progressive reduction in petiole length and deflection angle from the uppermost to the lowermost leaves should also result in the reduction of self-shading. Nevertheless, the latter leaf arrangement has not been reported previously for any tree species. Four Araliaceae species, namely, Gamblea innovans, Chengiopanax sciadophylloides, Dendropanax trifidus and Fatsia japonica, which are typical monoaxial tree species in Japan, were studied. We examined the crown structure of saplings growing in the light-limited understorey in a Japanese warm-temperate forest. Two evergreen species, Dendropanax trifidus and F. japonica showed progressive petiole elongation and progressive increase in the deflection angle from the uppermost to the lowermost leaves. In contrast, saplings of deciduous species, G. innovans and C. sciadophylloides had a leaf arrangement involving progressive reduction in petiole length and deflection angle from the uppermost to the lowermost leaves. The leaf arrangement has diversified among members of the same family, but all four studied species develop a crown with little self-shading that is adapted for growth in the light-limited understorey. Although trees are likely to be under the same selective pressure to reduce self-shading, this study revealed that there is flexibility in its morphological realisation, which has been poorly appreciated previously.


Assuntos
Fotossíntese , Árvores , Árvores/anatomia & histologia , Japão , Florestas , Folhas de Planta/anatomia & histologia
4.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811143

RESUMO

The problem of extracting the three-dimensional (3D) shape and material properties of surfaces from images is considered to be inherently ill posed. It is thought that a priori knowledge about either 3D shape is needed to infer material properties, or knowledge about material properties are needed to derive 3D shape. Here, we show that there is information in images that cospecify both the material composition and 3D shape of light permeable (translucent) materials. Specifically, we show that the intensity gradients generated by subsurface scattering, the shape of self-occluding contours, and the distribution of specular reflections covary in systematic ways that are diagnostic of both the surface's 3D shape and its material properties. These sources of image covariation emerge from being causally linked to a common environmental source: 3D surface curvature. We show that these sources of covariation take the form of "photogeometric constraints," which link variations in intensity (photometric constraints) to the sign and direction of 3D surface curvature (geometric constraints). We experimentally demonstrate that this covariation generates emergent cues that the visual system exploits to derive the 3D shape and material properties of translucent surfaces and demonstrate the potency of these cues by constructing counterfeit images that evoke vivid percepts of 3D shape and translucency. The concepts of covariation and cospecification articulated herein suggest a principled conceptual path forward for identifying emergent cues that can be used to solve problems in vision that have historically been assumed to be ill posed.

5.
Int J Mol Sci ; 25(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732247

RESUMO

To explore the impact of shade treatment on grape berries, 'Marselan' grape berries were bagged under different light transmission rates (100% (CK), 75% (A), 50% (B), 25% (C), 0% (D)). It was observed that this treatment delayed the ripening of the grape berries. The individual weight of the grape berries, as well as the content of fructose, glucose, soluble sugars, and organic acids in the berries, was measured at 90, 100, and 125 days after flowering (DAF90, DAF100, DAF125). The results revealed that shading treatment reduced the sugar content in grape berries; the levels of fructose and glucose were higher in the CK treatment compared to the other treatments, and they increased with the duration of the shading treatment. Conversely, the sucrose content exhibited the opposite trend. Additionally, as the weight of the grape berries increased, the content of soluble solids and soluble sugars in the berries also increased, while the titratable acidity decreased. Furthermore, 16 differentially expressed genes (DEGs) were identified in the photosynthesis-antenna protein pathway from the transcriptome sequencing data. Correlation analysis revealed that the expression levels of genes VIT_08s0007g02190 (Lhcb4) and VIT_15s0024g00040 (Lhca3) were positively correlated with sugar content in the berries at DAF100, but negatively correlated at DAF125. qRT-PCR results confirmed the correlation analysis. This indicates that shading grape clusters inhibits the expression of genes in the photosynthesis-antenna protein pathway in the grape berries, leading to a decrease in sugar content. This finding contributes to a deeper understanding of the impact mechanisms of grape cluster shading on berry quality, providing important scientific grounds for improving grape berry quality.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Fotossíntese , Proteínas de Plantas , Açúcares , Vitis , Vitis/genética , Vitis/metabolismo , Vitis/efeitos da radiação , Frutas/genética , Frutas/metabolismo , Frutas/efeitos da radiação , Fotossíntese/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Açúcares/metabolismo , Luz
6.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396654

RESUMO

Light is one of the most important environmental factors for plant growth. In the production process of tung oil tree cultivation, due to the inappropriate growth of shading conditions, the lower branches are often dry and dead, which seriously affects the yield of tung oil trees. However, little is known about the key factors of light-induced tree photomorphogenesis. In this study, a total of 22 VfBBX family members were identified to provide a reference for candidate genes in tung tree seedlings. All members of the VfBBX family have different numbers of highly conserved B-box domains or CCT domains. Phylogenetic evolution clustered the VfBBX genes into four categories, and the highest density of members was on chromosome 6. Interspecific collinearity analysis suggested that there were six pairs of duplicate genes in VfBBX members, but the expression levels of all family members in different growth and development stages of the tung tree were significantly divergent. After different degrees of shading treatment and physiological data determination of tung tree seedlings, the differential expression level and chlorophyll synthesis genes correlation analysis revealed that VfBBX9 was a typical candidate nuclear localization transcription factor that was significantly differentially expressed in light response. This study systematically identified the VfBBX gene family and provided a reference for studying its molecular function, enhanced the theoretical basis for tung tree breeding, and identified excellent varieties.


Assuntos
Aleurites , Aleurites/genética , Aleurites/metabolismo , Filogenia , Melhoramento Vegetal , Regulação da Expressão Gênica de Plantas
7.
J Environ Manage ; 355: 120480, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430885

RESUMO

Submerged plants inhibit algae through shading effects, nutrient competition, allelopathy, and combinations of these mechanisms. However, it is unclear which mechanism is dominant, and how the inhibition intensity results from the traits of the plant and algae. In this study, we performed meta-analysis to quantitatively identify the dominant mechanisms, evaluate the relationship between inhibition intensity and the species and functional traits of the submerged plants or algae, and reveal the influences of external environmental factors. We found that allelopathy caused stronger inhibition than the shading effect and nutrient competition and dominated the combined mechanisms. Although the leaf shapes of the submerged plants influenced light availability, this did not change the degree of algae suppression. Algal species, properties (toxic or nontoxic) and external environmental factors (e.g., lab/mesocosm experiments, co-/filtrate/extract culture, presence or absence of interspecific competition) potentially influenced inhibition strength. Cyanobacteria and Bacillariophyta were more strongly inhibited than Chlorophyta, and toxic Cyanobacteria more than non-toxic Cyanobacteria. Algae inhibition by submerged plants was species-dependent. Ceratophyllum, Vallisneria, and Potamogeton strongly inhibited Microcystis, and can potentially prevent or mitigate harmful algal blooms of this species. However, the most common submerged plant species inhibited mixed algae communities to some extent. The results from lab experiments and mesocosm experiments both confirmed the inhibition of algae by submerged plants, but more evidence from mesocosm experiments is needed to elucidate the inhibition mechanism in complex ecosystems. Submerged plants in co-cultures inhibited algae more strongly than in extract and filtrate cultures. Complex interspecific competition may strengthen or weaken algae inhibition, but the response of this inhibition to complex biological mechanisms needs to be further explored. Our meta-analysis provides insights into which mechanisms contributed most to the inhibition effect and a scientific basis for selecting suitable submerged plant species and controlling external conditions to prevent algal blooms in future ecological restoration of lakes.


Assuntos
Cianobactérias , Ecossistema , Plantas , Proliferação Nociva de Algas , Lagos , Extratos Vegetais
8.
J Environ Sci Health B ; 59(8): 540-549, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39034761

RESUMO

The variation in light within the environment triggers morphophysiological changes in plants and can lead to distinct responses in sun-exposed or shaded plants to glyphosate. The response of Urochloa genotypes subjected to desiccation with 2160, 1622.4, 1080, 524.4, 273.6, and 0.0 g ha-1 of glyphosate was evaluated in full sun and shade conditions. Cayana grass, mulato II grass, and sabiá grass - hybrids recently launched on the market, in addition to palisade grass and congo grass were evaluated. Under full sun, we achieved control of congo grass using 1080 g ha-1 of glyphosate, while the other grasses required 2160 g ha-1. In the low-light environment, sabiá grass was effectively controlled with 524.4 g ha-1 of glyphosate, but the other grasses needed 273.6 g ha-1. In shading, compared to full sun, the savings with glyphosate were 75 and 76% for the control of congo grass and sabiá grass, respectively, and 87% for palisade grass, mulato II grass and cayana grass. Increasing glyphosate doses leads to a decline in the quantum efficiency of photosystem II and in the electron transport rate, especially in the shade. Urochloa genotypes are more sensitive to glyphosate in the shade, which must be considered when determining the herbicide dose.


Assuntos
Glicina , Glifosato , Herbicidas , Poaceae , Glicina/análogos & derivados , Glicina/farmacologia , Herbicidas/farmacologia , Poaceae/efeitos dos fármacos , Poaceae/efeitos da radiação , Poaceae/genética , Poaceae/metabolismo , Luz , Luz Solar
9.
BMC Plant Biol ; 23(1): 194, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041465

RESUMO

BACKGROUND: Improving the yield and aroma content of fragrant rice is the focus of fragrant rice research. Light and Zinc (Zn) management generally cause regulations in the 2-acetyl-1-pyrroline (2AP) accumulation in fragrant rice. In addition, Zn promotes rice growth and improves rice yield, which has the potential to compensate for the negative impact of low light on fragrant rice yield. However, the potential of Zn to improve fragrant rice yield and 2AP content under shading conditions has not been verified. METHODS: Field experiments were conducted in the rice season (May-September) in 2019 to 2021. Two light i.e., normal light (NL) and low light (LL) and four Zn levels i.e., 0 kg Zn ha- 1 (N0), 1 kg Zn ha- 1 (Zn1), 2 kg Zn ha- 1(Zn2), and 3 kg Zn ha- 1 (Zn3), which applied at booting stage was set up. The grain yield, 2AP contents, Zn content in polished rice, photosynthesis related indicators, MDA content, antioxidant enzyme activity and the biochemical parameters related to 2AP formation were investigated. RESULTS: Shading reduced yield by 8.74% and increased 2AP content by 24.37%. In addition, shading reduced net photosynthetic rate (Pn), superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), and increased proline, γ-aminobutyric acid (GABA), and pyrroline-5-carboxylic acid (P5C), proline dehydrogenase (PDH), △1-pyrroline-5-carboxylic acid synthetase (P5CS), malondialdehyde (MDA). With increasing Zn application levels, yield, 2AP, Zn content in polished rice, Pn, proline, P5C, GABA, PDH, P5CS, SOD, CAT and POD increased, and MDA decreased. Significant Light and Zn interaction effect on 2AP content was detected, and both shading and increasing Zn application increased the 2AP content. CONCLUSION: Shading can increase the 2AP content but reduce the yield of fragrant rice. Increasing Zn application under shading conditions can further promote the biosynthesis of 2AP, but the effect of improving yield is limited.


Assuntos
Oryza , Zinco , Zinco/farmacologia , Odorantes , Antioxidantes/farmacologia , Superóxido Dismutase , Peroxidases , Prolina Oxidase , Prolina , Ácidos Carboxílicos , Ácido gama-Aminobutírico/farmacologia , Suplementos Nutricionais
10.
BMC Plant Biol ; 23(1): 232, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37131187

RESUMO

Temporally heterogeneous environments is hypothesized to correlate with greater plasticity of plants, which has rarely been supported by direct evidence. To address this issue, we subjected three species from different ranges of habitats to a first round of alternating full light and heavy shading (temporally heterogeneous light experience), constant moderate shading and full light conditions (temporally homogeneous light experiences, control) and a second round of light-gradient treatments. We measured plant performance in a series of morphological, biomass, physiological and biochemical traits at the end of each round. Compared to constant full light experience, temporally heterogeneous light conditions induced immediate active biochemical responses (in the first round) with improved late growth in biomass (during the second round); constant moderate shading experience increased photosynthetic physiological and biomass performances of plants in early response, and decreased their late growth in biomass. The karst endemic species of Kmeria septentrionalis showed greater improvement in late growth of biomass and lower decrease in biochemical performance, due to early heterogeneous experience, compared to the non-karst species of Lithocarpus glaber and the karst adaptable species of Celtis sinensis. Results suggested plants will prefer to produce morphological and physiological responses that are less reversible and more costly in the face of more reliable environmental cues at early stage in spite of decreased future growth potential, but to produce immediate biochemical responses for higher late growth potential when early environmental cues are less reliable, to avoid the loss of high costs and low profits. Typical karst species should be more able to benefit from early temporally heterogeneous experience, due to long-term adaptation to karst habitats of high environmental heterogeneity and low resource availability.


Assuntos
Ecossistema , Plantas , Biomassa , Fotossíntese , Adaptação Fisiológica , Folhas de Planta/fisiologia
11.
New Phytol ; 237(5): 1684-1695, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36427292

RESUMO

If trees minimize self-shading, new foliage in shaded parts of the crown should remain minimal. However, many species have abundant foliage on short shoots inside their crown. In this paper, we test the hypothesis that short shoots allow trees to densify their foliage in self-shaded parts of the crown thanks to reduced costs. Using 30 woody species in Mediterranean and tropical biomes, we estimated the contribution of short shoots to total plant foliage, calculated their costs relative to long shoots including wood cost and used 3D plant simulations calibrated with field measurements to quantify their light interception, self-shading and yield. In species with short shoots, leaves on short shoots account for the majority of leaf area. The reduced cost of short stems enables the production of leaf area with 36% less biomass. Simulations show that although short shoots are more self-shaded, they benefit the plant because they cost less. Lastly, the morphological properties of short shoots have major implications for whole plant architecture. Taken together, our results question the validity of only assessing leaf costs to understand leaf economics and call for more integrated observations at the crown scale to understand light capture strategies in woody plants.


Assuntos
Ecossistema , Madeira , Brotos de Planta/anatomia & histologia , Análise Custo-Benefício , Biomassa , Árvores/anatomia & histologia , Folhas de Planta/anatomia & histologia
12.
Photosynth Res ; 157(2-3): 103-118, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37314664

RESUMO

The galloping rise in global population in recent years and the accompanying increase in food and energy demands has created land use crisis between food and energy production, and eventual loss of agricultural lands to the more lucrative photovoltaics (PV) energy production. This experiment was carried out to investigate the effect of organic photovoltaics (OPV) and red-foil (RF) transmittance on growth, yield, photosynthesis and SPAD value of spinach under greenhouse and field conditions. Three OPV levels (P0: control; P1: transmittance peak of 0.11 in blue light (BL) and 0.64 in red light (RL); P2: transmittance peak of 0.09 in BL and 0.11 in RL) and two spinach genotypes (bufflehead, eland) were combined in a 3 × 2 factorial arrangement in a completely randomized design with 4 replications in the greenhouse, while two RF levels (RF0: control; RF1: transmittance peak of 0.01 in BL and 0.89 in RL) and two spinach genotypes were combined in a 2 × 2 factorial in randomized complete block design with four replications in the field. Data were collected on growth, yield, photosynthesis and chlorophyll content. Analysis of variance (ANOVA) showed significant reduction in shoot weight and total biomass of spinach grown under very low light intensities as a function of the transmittance properties of the OPV cell used (P2). P1 competed comparably (p > 0.05) with control in most growth and yield traits measured. In addition, shoot to root distribution was higher in P1 than control. RF reduced shoot and total biomass production of spinach in the field due to its inability to transmit other spectra of light. OPV-RF transmittance did not affect plant height (PH), leaf number (LN), and SPAD value but leaf area (LA) was highest in P2. Photochemical energy conversion was higher in P1, P2 and RF1 in contrast to control due to lower levels of non-photochemical energy losses through the Y(NO) and Y(NPQ) pathways. Photo-irradiance curves showed that plants grown under reduced light (P2) did not efficiently manage excess light when exposed to high light intensities. Bufflehead genotype showed superior growth and yield traits than eland across OPV and RF levels. It is therefore recommended that OPV cells with transmittance properties greater than or equal to 11% in BL and 64% in RL be used in APV systems for improved photochemical and land use efficiency.


Assuntos
Spinacia oleracea , Clorofila/metabolismo , Genótipo , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Spinacia oleracea/metabolismo
13.
J Exp Bot ; 74(17): 5088-5103, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37338600

RESUMO

Large differences exist in the number of grains per spikelet across an individual wheat (Triticum aestivum L.) spike. The central spikelets produce the highest number of grains, while apical and basal spikelets are less productive, and the most basal spikelets are commonly only developed in rudimentary form. Basal spikelets are delayed in initiation, yet they continue to develop and produce florets. The precise timing or the cause of their abortion remains largely unknown. Here, we investigated the underlying causes of basal spikelet abortion using shading applications in the field. We found that basal spikelet abortion is likely to be the consequence of complete floret abortion, as both occur concurrently and have the same response to shading treatments. We detected no differences in assimilate availability across the spike. Instead, we show that the reduced developmental age of basal florets pre-anthesis is strongly associated with their increased abortion. Using the developmental age pre-abortion, we were able to predict final grain set per spikelet across the spike, alongside the characteristic gradient in the number of grains from basal to central spikelets. Future efforts to improve spikelet homogeneity across the spike could thus focus on improving basal spikelet establishment and increasing floret development rates pre-abortion.


Assuntos
Flores , Triticum , Triticum/fisiologia , Grão Comestível
14.
J Exp Bot ; 74(12): 3544-3559, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36964899

RESUMO

Grain chalkiness is an important index of rice appearance quality and is negatively associated with rice processing and eating quality. However, the genetic mechanism underlying chalkiness formation is largely unknown. To identify the genetic basis of chalkiness, 410 recombinant inbred lines (RILs) derived from two representative indica rice varieties, Shuhui498 (R498) and Yihui3551 (R3551), were used to discover quantitative trait loci (QTLs). The two parental lines and RILs were grown in three locations in China under three controlled fertilizer application levels. Analyses indicated that chalkiness was significantly affected by genotype, the environment, and the interaction between the two, and that heritability was high. Several QTLs were isolated, including the two stable QTLs qCGP6 and qCGP8. Fine mapping and candidate gene verification of qCGP6 showed that Wx may play a key role in chalkiness formation. Chromosomal segment substitution lines (CSSLs) and near-isogenic lines (NILs) carrying the Wxa or Wxin allele produced more chalky grain than the R498 parent. A similar result was also observed in the 3611 background. Notably, the effect of the Wx genotype on rice chalkiness was shown to be dependent on environmental conditions, and Wx alleles exhibited different sensitivities to shading treatment. Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), the Wxa promoter region was successfully edited; down-regulating Wx alleviates chalkiness formation in NILR498-Wxa. This study developed a new strategy for synergistic improvement of eating and appearance qualities in rice, and created a novel Wx allele with great potential in breeding applications.


Assuntos
Oryza , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Melhoramento Vegetal , Grão Comestível/genética , Genótipo , China , Oryza/genética
15.
J Evol Biol ; 36(7): 1032-1039, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36737844

RESUMO

Countershading is a gradient of colouration in which the illuminated dorsal surfaces are darker than the unilluminated ventral surface. It is widespread in the animal kingdom and endows the body with a more uniform colour to decrease the chance of detection by predators. Although recent empirical studies support the theory of survival advantage conferred by countershading, this camouflage strategy has evolved only in some of the cryptic animals, and our understanding of the factors that affect the evolution of countershading is limited. This study examined the association between body size and countershading using lepidopteran larvae (caterpillars) as a model system. Specifically, we predicted that countershading may have selectively evolved in large-sized species among cryptic caterpillars if (1) large size constrains camouflage which facilitates the evolution of a trait reinforcing their crypsis and (2) the survival advantage of countershading is size-dependent. Phylogenetic analyses of four different lepidopteran families (Saturniidae, Sphingidae, Erebidae, and Geometridae) suggest equivocal results: countershading was more likely to be found in larger species in Saturniidae but not in the other families. The field predation experiment assuming avian predators did not support size-dependent predation in countershaded prey. Collectively, we found only weak evidence that body size is associated with countershading in caterpillars. Our results suggest that body size is not a universal factor that has shaped the interspecific variation in countershading observed in caterpillars.


Assuntos
Pigmentação , Comportamento Predatório , Animais , Filogenia , Tamanho Corporal , Larva
16.
Crit Rev Food Sci Nutr ; : 1-22, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009832

RESUMO

Matcha, a powder processed from tea leaves, has a unique green tea flavor and appealing color, in addition to many other sought after functional properties for a wide range of formulated food applications (e.g., dairy products, bakery products, and beverage). The properties of matcha are influenced by cultivation method and processing post-harvest. The transition from drinking tea infusion to eating whole leaves provides a healthy option for the delivery of functional component and tea phenolics in various food matrix. The aim of this review is to describe the physico-chemical properties of matcha, the specific requirements for tea cultivation and industrial processing. The quality of matcha mainly depends on the quality of fresh tea leaves, which is affected by preharvest factors including tea cultivar, shading treatment, and fertilization. Shading is the key measure to increase greenness, reduce bitterness and astringency, and enhance umami taste of matcha. The potential health benefits of matcha and the gastrointestinal fate of main phenolics in matcha are covered. The chemical compositions and bioactivities of fiber-bound phenolics in matcha and other plant materials are discussed. The fiber-bound phenolics are considered promising components which endow matcha with boosted bioavailability of phenolics and health benefits through modulating gut microbiota.

17.
Oecologia ; 201(4): 915-927, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36932216

RESUMO

Branch architecture is a key determinant of plant performance owing to its role in a light interception by photosynthetic tissues. However, under stressed conditions, excess light may be harmful to the photosynthetic apparatus, and plants often present structural mechanisms to avoid photoinhibition. Three-dimensional models were constructed of the aerial parts in different locations within the crown of three co-occurring tree species (Quercus ilex, Q. suber and Q. faginea) growing in a Mediterranean environment. We hypothesized that the species with the shorter leaf life span would exhibit higher leaf display efficiency (silhouette to total leaf area, STAR), maximizing light interception and photosynthesis in the short term. In addition, more exposed positions within a canopy should develop more structural avoidance mechanisms to minimize excessive radiation. Significant differences were detected in architectural traits at both the intra- and interspecific level. Architectural traits promoting greater self-shading were more frequent in the species with longer leaf longevity and in the canopy locations experiencing higher temperatures at the times of maximum sunlight. However, these trends were in part counteracted by the changes in individual leaf area, which tended to be larger in the species with shorter leaf longevity and in the less exposed canopy locations. We conclude that the variation in architectural traits occurs mainly as a means to avoid the excessive self-shading of branches with the largest leaf size.


Assuntos
Quercus , Quercus/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Árvores/fisiologia , Luz
18.
Int J Biometeorol ; 67(7): 1199-1212, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37278864

RESUMO

This study aimed to assess the influence of the high biodiversity silvopastoral system (SPSnu) on the microclimate, pasture production, and pasture chemical composition. Microclimate variables and pasture production and chemical composition were measured in pared paddocks under SPSnu and treeless pasture (TLP) in a commercial farm during four seasons in Southern Brazil. SPSnu measurements were subdivided into two areas: around the nuclei (AN) and area inter-nuclei (IN). In the TLP paddocks, we plotted fictitious nuclei with the same areas and distributions of SPSnu, however without trees. For the microclimate measurements, these areas were noted when shaded or unshaded by the nuclei trees. In each season, the microclimate variables air temperature (AT, °C), relative humidity (RH, %), illuminance (Ilu, lux), wind speed (WS, m/s), and soil surface temperature (SST, °C) were measured. In addition, botanical composition (%), pasture production (kg/DM/ ha), and pasture chemical composition were evaluated. The SPSnu provided the lowest values of microclimate variables in all seasons (p < 0.05), except for the relative humidity. Winter had the highest thermal amplitude in the systems. The highest difference between SPSnu and TLP for AT (4.3 °C) and SST (5.2 °C) was measured during the hot seasons (spring and summer). In contrast, during cold seasons (autumn and winter) it observed highest thermal amplitude between SPSnu and TLP. Overall, the highest annual pasture production was observed in the SPSnu (p < 0.05). During the summer, the SPSnu areas showed the highest values of crude protein and dry matter (p < 0.05). During the winter, the TLP showed the lowest values (p < 0.05) of pasture production and dry matter. It was observed that SPSnu improved the microclimate at the pasture level, influencing pasture production and pasture chemical composition. The enhanced microclimate can partially mitigate some of the effects of climate change on pastoral agroecosystems, creating conditions for ecological rehabilitation of ecosystem processes and services. These conditions could be amplified to a biome level through a payment for ecosystem services program.


Assuntos
Ecossistema , Microclima , Temperatura , Temperatura Baixa , Árvores , Biodiversidade , Estações do Ano , Umidade
19.
Sensors (Basel) ; 24(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38202971

RESUMO

In the context of climate change conditions, addressing the shifting composition of forest stands and changes in traditional forest management practices are necessary. For this purpose, understanding the biomass allocation directly influenced by crown architecture is crucial. In this paper, we want to demonstrate the possibility of 3D mensuration of canopy architecture with the digitizer sensor Fastrak Polhemus and demonstrate its capability for assessing important structural information for forest purposes. Scots pine trees were chosen for this purpose, as it is the most widespread tree species in Europe, which, paradoxically, is very negatively affected by climate change. In our study, we examined young trees since the architecture of young trees influences their growth potential. In order to get the most accurate measurement of tree architecture, we evaluated the use of the Fastrak Polhemus magnetic digitizer to create a 3D model of individual trees and perform a subsequent statistical analysis of the data obtained. It was found that the stand density affects the number of branches in different orders and the heights of the trees in the process of natural regeneration. Regarding the branches, in our case, the highest number of branch orders was found in the clear-cut areas (density = 0.0), whereas the lowest branching was on-site with mature stands (density = 0.8). The results showed that the intensity of branching (assessed as the number of third-order branches) depends on the total number of branches of the tree of different branch orders but also on stand density where the tree is growing. An important finding in this study was the negative correlation between the tree branching and the tree height. The growth in height is lower when the branching expansion is higher. Similar data could be obtained with Lidar sensors. However, the occlusion due to the complexity of the tree crown would impede the information from being complete when using the magnetic digitizer. These results provide vital information for the creation of structural-functional models, which can be used to predict and estimate future tree growth and carbon fixation.


Assuntos
Florestas , Árvores , Biomassa , Mudança Climática , Europa (Continente)
20.
Sensors (Basel) ; 23(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36772200

RESUMO

Image vignetting is one of the major radiometric errors that occur in lens-camera systems. In many applications, vignetting is an undesirable effect; therefore, when it is impossible to fully prevent its occurrence, it is necessary to use computational methods for its correction. In probably the most frequently used approach to the vignetting correction, that is, the flat-field correction, the use of appropriate vignetting models plays a pivotal role. The radial polynomial (RP) model is commonly used, but for its proper use, the actual vignetting of the analyzed lens-camera system has to be a radial function. However, this condition is not fulfilled by many systems. There exist more universal models of vignetting; however, these models are much more sophisticated than the RP model. In this article, we propose a new model of vignetting named the Deformable Radial Polynomial (DRP) model, which joins the simplicity of the RP model with the universality of more sophisticated models. The DRP model uses a simple distance transformation and minimization method to match the radial vignetting model to the non-radial vignetting of the analyzed lens-camera system. The real-data experiment confirms that the DRP model, in general, gives better (up 35% or 50%, depending on the measure used) results than the RP model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA