Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Ann Bot ; 134(1): 101-116, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38488820

RESUMO

BACKGROUND AND AIMS: Intra- and transgenerational plasticity may provide substantial phenotypic variation to cope with environmental change. Since assessing the unique contribution of the maternal environment to the offspring phenotype is challenging in perennial, outcrossing plants, little is known about the evolutionary and ecological implications of transgenerational plasticity and its persistence over the life cycle in these species. We evaluated how intra- and transgenerational plasticity interplay to shape the adaptive responses to drought in two perennial Mediterranean shrubs. METHODS: We used a novel common garden approach that reduced within-family genetic variation in both the maternal and offspring generations by growing the same maternal individual in two contrasting watering environments, well-watered and drought, in consecutive years. We then assessed phenotypic differences at the reproductive stage between offspring reciprocally grown in the same environments. KEY RESULTS: Maternal drought had an effect on offspring performance only in Helianthemum squamatum. Offspring of drought-stressed plants showed more inflorescences, less sclerophyllous leaves and higher growth rates in both watering conditions, and heavier seeds under drought, than offspring of well-watered maternal plants. Maternal drought also induced similar plasticity patterns across maternal families, showing a general increase in seed mass in response to offspring drought, a pattern not observed in the offspring of well-watered plants. In contrast, both species expressed immediate adaptive plasticity, and the magnitude of intragenerational plasticity was larger than the transgenerational plastic responses. CONCLUSIONS: Our results highlight that adaptive effects associated with maternal drought can persist beyond the seedling stage and provide evidence of species-level variation in the expression of transgenerational plasticity. Such differences between co-occurring Mediterranean species in the prevalence of this form of non-genetic inheritance may result in differential vulnerability to climate change.


Assuntos
Adaptação Fisiológica , Secas , Adaptação Fisiológica/genética , Fenótipo , Região do Mediterrâneo , Sementes/genética , Sementes/fisiologia , Sementes/crescimento & desenvolvimento , Variação Genética
2.
Int J Biometeorol ; 68(5): 871-882, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38311643

RESUMO

Phenological research in temperate-deciduous forests typically focuses on upper canopy trees, due to their overwhelming influence on ecosystem productivity and function. However, considering that shrubs leaf out earlier and remain green longer than trees, they play a pivotal role in ecosystem productivity, particularly at growing season extremes. Furthermore, an extended growing season of non-native shrubs provides a competitive advantage over natives. Here, we report spring phenology, budburst, leaf-out, and full-leaf unfolded (2017-2021) of a range of co-occurring species of tree (ash, American basswood, red oak, white oak, and boxelder) and shrub (native species: chokecherry, pagoda dogwood, nannyberry, American wild currant and Eastern wahoo, and non-native species: buckthorn, honeysuckle, European privet, and European highbush cranberry) in an urban woodland fragment in Wisconsin, USA, to determine how phenology differed between plant groups. Our findings show that all three spring phenophases of shrubs were 3 weeks earlier (p < 0.05) than trees. However, differences between shrubs groups were only significant for the later phenophase; full-leaf unfolded, which was 6 days earlier (p < 0.05) for native shrubs. The duration of the spring phenological season was 2 weeks longer (p < 0.05) for shrubs than trees. These preliminary findings demonstrate that native shrubs, at this site, start full-leaf development earlier than non-native species suggesting that species composition must be considered when generalizing whether phenologies differ between vegetation groups. A longer time series would be necessary to determine future implications on ecosystem phenology and productivity and how this might impact forests in the future, in terms of species composition, carbon sequestration, and overall ecosystem dynamics.


Assuntos
Estações do Ano , Árvores , Árvores/crescimento & desenvolvimento , Wisconsin , Folhas de Planta/crescimento & desenvolvimento , Espécies Introduzidas , Florestas , Cidades
3.
Int J Biometeorol ; 68(8): 1663-1673, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38714612

RESUMO

The timing and duration of autumn leaf phenology marks important transitions in temperate deciduous forests, such as, start of senescence, declining productivity and changing nutrient cycling. Phenological research on temperate deciduous forests typically focuses on upper canopy trees, overlooking the contribution of other plant functional groups like shrubs. Yet shrubs tend to remain green longer than trees, while non-native shrubs, in particular, tend to exhibit an extended growing season that confers a competitive advantage over native shrubs. We monitored leaf senescence and leaf fall (2017-2020) of trees and shrubs (native and non-native) in an urban woodland fragment in Wisconsin, USA. Our findings revealed that, the start of leaf senescence did not differ significantly between vegetation groups, but leaf fall started (DOY 273) two weeks later in shrubs. Non-native shrubs exhibited a considerably delayed start (DOY 262) and end of leaf senescence (DOY 300), with leaf-fall ending (DOY 315) nearly four weeks later than native shrubs and trees. Overall, the duration of the autumn phenological season was longer for non-native shrubs than either native shrubs or trees. Comparison of the timing of spring phenophases with the start and end of leaf senescence revealed that when spring phenology in trees starts later in the season senescence also starts later and ends earlier. The opposite pattern was observed in native shrubs. In conclusion, understanding the contributions of plant functional groups to overall forest phenology requires future investigation to ensure accurate predictions of future ecosystem productivity and help address discrepancies with remote sensing phenometrics.


Assuntos
Folhas de Planta , Estações do Ano , Árvores , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Árvores/crescimento & desenvolvimento , Wisconsin , Espécies Introduzidas , Florestas
4.
J Environ Manage ; 370: 122480, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303589

RESUMO

Abandoned agricultural areas (i.e. oldfields) represent an opportunity for natural vegetation recovery, increasing soil carbon sequestration and lessening the impacts of climate change and desertification. Ecological succession in oldfields can be hampered by the harsh conditions of semiarid and arid ecosystems, and hence, restoration actions may be needed in some contexts to reactivate the ecosystem functioning. Fleshy-fruited shrubs are indicators of progression in the ecological succession, which can shift notably across environmental gradients, making difficult to obtain robust conclusions at regional scales. Other poorly studied aspects at such scales (agricultural legacy, structural features and local landscape effects) add to this knowledge gap. Here, we study the species-specific natural colonization patterns of fleshy-fruited shrubs in semiarid oldfields across environmental gradients in the Southeast of the Iberian Peninsula taking into account specific traits of plants. We used Hierarchical Modelling of Species Communities (HMSC) to test the influence of the time since the abandonment and the past land-use history of the oldfields, and the effect of local structural factors, such as the presence of remnant trees and natural patches of vegetation, on the shrub recolonization patterns. We found that altitude and lithology conditioned the structure of shrub communities, allowing the selection of different focal species for making recommendations for restoration. Time since abandonment was not relevant for the colonization process. The persistence of remnant trees in the oldfields showed a positive effect on the occurrence of several shrub species. Close sources of propagules (terrace edges and/or natural vegetation patches) benefited the occurrence of certain species mainly at lower altitudes. Traits of species (growth form, root depth, dispersal mode, fruit length and water content) helped to explain the performance of species along the environmental gradients. We identified the main drivers of natural colonization of fleshy-fruited shrubs in semiarid oldfields across environmental gradients, providing ecological knowledge to guide scientists and practitioners to develop nature-based restoration frameworks. Different management actions are recommended according to the environmental gradient.

5.
J Nematol ; 56(1): 20240024, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39143958

RESUMO

Oregon leads the United States in nursery production of shade trees and is third in deciduous and broadleaf evergreen shrub production. Plant-parasitic nematodes have been implicated in problems with the growth of plants in nurseries and are also of phytosanitary risk. A greenhouse experiment was conducted to evaluate the host status of four trees (Quercus alba, Quercus garryana, Acer campestre, Thuja occidentalis) and two shrubs (Buxus sempervirens, Rhododendron catawbiense) to Meloidogyne incognita, Meloidogyne hapla, and Pratylenchus neglectus. Each plant/nematode treatment was replicated five times, and the experiment was conducted twice. Plants were inoculated with 3,000 eggs of M. incognita or M. hapla and 2,500 individuals of P. neglectus two weeks after planting. After three months, the plants were harvested, and the total density of nematodes in soil and roots for P. neglectus and the total density of second-stage juveniles (J2) in soil and eggs on roots for M. hapla and M. incognita were determined. The final nematode population (Pf) and reproductive factor (RF = Pf/initial population density) were calculated. For M. incognita and M. hapla, all of the ornamental trees and shrubs would be considered as fair to good hosts with RF values > 1. Meloidogyne incognita had the highest Pf (5,234 total J2 and eggs/pot) and RF value (28.4) on A. campestre. For P. neglectus, all of the ornamental trees and shrubs were fair to good hosts, except for B. sempervirens. Buxus sermpervirens was not a host for P. neglectus, with an RF value of almost 0. This is the first report of Q. alba, Q. garryana, and A. campestre as hosts for M. incognita, M. hapla, and P. penetrans. This is also the first report of T. occidentalis and R. catawbiense as hosts for P. penetrans and the non-host status of B. sermpervirens for P. penetrans.

6.
New Phytol ; 238(3): 1019-1032, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36751911

RESUMO

Aerenchymatic transport is an important mechanism through which plants affect methane (CH4 ) emissions from peatlands. Controlling environmental factors and the effects of plant phenology remain, however, uncertain. We identified factors controlling seasonal CH4 flux rate and investigated transport efficiency (flux rate per unit of rhizospheric porewater CH4 concentration). We measured CH4 fluxes through individual shoots of Carex rostrata, Menyanthes trifoliata, Betula nana and Salix lapponum throughout growing seasons in 2020 and 2021 and Equisetum fluviatile and Comarum palustre in high summer 2021 along with water-table level, peat temperature and porewater CH4 concentration. CH4 flux rate of C. rostrata was related to plant phenology and peat temperature. Flux rates of M. trifoliata and shrubs B. nana and S. lapponum were insensitive to the investigated environmental variables. In high summer, flux rate and efficiency were highest for C. rostrata (6.86 mg m-2  h-1 and 0.36 mg m-2  h-1 (µmol l-1 )-1 , respectively). Menyanthes trifoliata showed a high flux rate, but limited efficiency. Low flux rates and efficiency were detected for the remaining species. Knowledge of the species-specific CH4 flux rate and their different responses to plant phenology and environmental factors can significantly improve the estimation of ecosystem-scale CH4 dynamics in boreal peatlands.


Assuntos
Ecossistema , Solo , Estações do Ano , Temperatura , Metano , Dióxido de Carbono , Áreas Alagadas
7.
Ann Bot ; 131(4): 723-736, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36848247

RESUMO

BACKGROUND AND AIMS: Desert plants possess excellent water-conservation capacities to survive in extreme environments. Cuticular wax plays a pivotal role in reducing water loss through plant aerial surfaces. However, the role of cuticular wax in water retention by desert plants is poorly understood. METHODS: We investigated leaf epidermal morphology and wax composition of five desert shrubs from north-west China and characterized the wax morphology and composition for the typical xerophyte Zygophyllum xanthoxylum under salt, drought and heat treatments. Moreover, we examined leaf water loss and chlorophyll leaching of Z. xanthoxylum and analysed their relationships with wax composition under the above treatments. KEY RESULTS: The leaf epidermis of Z. xanthoxylum was densely covered by cuticular wax, whereas the other four desert shrubs had trichomes or cuticular folds in addition to cuticular wax. The total amount of cuticular wax on leaves of Z. xanthoxylum and Ammopiptanthus mongolicus was significantly higher than that of the other three shrubs. Strikingly, C31 alkane, the most abundant component, composed >71 % of total alkanes in Z. xanthoxylum, which was higher than for the other four shrubs studied here. Salt, drought and heat treatments resulted in significant increases in the amount of cuticular wax. Of these treatments, the combined drought plus 45 °C treatment led to the largest increase (107 %) in the total amount of cuticular wax, attributable primarily to an increase of 122 % in C31 alkane. Moreover, the proportion of C31 alkane within total alkanes remained >75 % in all the above treatments. Notably, the water loss and chlorophyll leaching were reduced, which was negatively correlated with C31 alkane content. CONCLUSION: Zygophyllum xanthoxylum could serve as a model desert plant for study of the function of cuticular wax in water retention because of its relatively uncomplicated leaf surface and because it accumulates C31 alkane massively to reduce cuticular permeability and resist abiotic stressors.


Assuntos
Zanthoxylum , Zygophyllum , Zygophyllum/metabolismo , Zanthoxylum/metabolismo , Alcanos , Folhas de Planta/metabolismo , Cloreto de Sódio , Clorofila , Estresse Fisiológico , Água/metabolismo , Ceras , Regulação da Expressão Gênica de Plantas
8.
Microb Ecol ; 86(2): 1145-1163, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36495359

RESUMO

Desertification leads to the extreme fragility of ecosystems and seriously threatens ecosystem functioning in desert areas. The planting of xerophytes, especially leguminous shrubs, is an effective and common means to reverse desertification. Soil microorganisms play a crucial role in nutrient cycling and energy flow in ecosystems. However, the effects of introducing leguminous shrubs on soil microbial diversity and the relevant mechanisms are not clear. Here, we employed the high-throughput absolute quantification 16S rRNA sequencing method to analyze the diversity of soil bacteria in sand-fixing areas of mixed shrublands with three combinations of shrubs, i.e., C. korshinskii × Corethrodendron scoparium (CaKCoS), C. korshinskii × Calligonum mongolicum (CaKCaM), and C. scoparium × C. mongolicum (CoSCaM), in the south of the Mu Us Sandy Land, China. This area suffered from moving dunes 20 years ago, but after introducing these shrubs to fix the dunes, the ecosystem was restored. Additionally, the effects of soil physicochemical properties on soil bacterial composition and diversity were analyzed with redundancy analysis (RDA) and structural equation modeling (SEM). It was found that the Shannon index of soil bacteria in CaKCoS was significantly higher than that in CaKCaM and CoSCaM, and the abundance of the dominant phyla, including Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Planctomycetes, Thaumarchaeota, Armatimonadetes, candidate_division_WPS-1, and Nitrospirae, increased significantly in CaKCoS and CaKCaM compared to that in CoSCaM. RDA showed that the majority of soil properties, such as total nitrogen (TN), available potassium (AK), N:P ratio, soil moisture (SM), and available phosphorus (AP), were important soil environmental factors affecting the abundance of the dominant phyla, and RDA1 and RDA2 accounted for 56.66% and 2.35% of the total variation, respectively. SEM showed that the soil bacterial α-diversity was positively affected by the soil organic carbon (SOC), N:P ratio, and total phosphorus (TP). Moreover, CaKCoS had higher SM, total carbon (TC), total potassium (TK), and AP than CaKCaM and CoSCaM. Collectively, these results highlight a conceptual framework in which the combination of leguminous shrubs can effectively drive soil bacterial diversity by improving soil physicochemical properties and maintaining ecosystem functioning during desertification reversal.


Assuntos
Ecossistema , Fabaceae , Solo/química , RNA Ribossômico 16S/genética , Carbono/análise , Conservação dos Recursos Naturais , Bactérias/genética , China , Fósforo/análise , Potássio/análise , Microbiologia do Solo
9.
Proc Natl Acad Sci U S A ; 117(52): 33334-33344, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318214

RESUMO

Arctic sea ice extent (SIE) is declining at an accelerating rate with a wide range of ecological consequences. However, determining sea ice effects on tundra vegetation remains a challenge. In this study, we examined the universality or lack thereof in tundra shrub growth responses to changes in SIE and summer climate across the Pan-Arctic, taking advantage of 23 tundra shrub-ring chronologies from 19 widely distributed sites (56°N to 83°N). We show a clear divergence in shrub growth responses to SIE that began in the mid-1990s, with 39% of the chronologies showing declines and 57% showing increases in radial growth (decreasers and increasers, respectively). Structural equation models revealed that declining SIE was associated with rising air temperature and precipitation for increasers and with increasingly dry conditions for decreasers. Decreasers tended to be from areas of the Arctic with lower summer precipitation and their growth decline was related to decreases in the standardized precipitation evapotranspiration index. Our findings suggest that moisture limitation, associated with declining SIE, might inhibit the positive effects of warming on shrub growth over a considerable part of the terrestrial Arctic, thereby complicating predictions of vegetation change and future tundra productivity.


Assuntos
Camada de Gelo , Desenvolvimento Vegetal , Regiões Árticas , Clima , Umidade , Modelos Teóricos , Estações do Ano , Solo , Temperatura
10.
J Environ Manage ; 347: 119091, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793288

RESUMO

Canopy interception loss affects the local water budget by removing a non-negligible proportion of rainfall from the terrestrial surface. Thus, quantifying interception loss is essential for thoroughly understanding the role of vegetation in the local hydrological cycle, especially in dryland ecosystems. However, sparse shrubs in dryland ecosystems have not been sufficiently studied, owing to time- and labor-intensive field experiments and challenging model parameterization. In this work, 4-year growing season field experiments on rainfall partitioning were conducted for three dominant shrub species (Haloxylon ammodendron, Nitraria sphaerocarpa, and Calligonum mongolicum) in an oasis-desert ecotone in northwestern China. The revised Gash analytical model was well parameterized, which reliably simulated the cumulative interception loss for sparse shrubs, and the validated model performed better for H. ammodendron, followed by C. mongolicum and N. sphaerocarpa, with relative errors of 8.4%, 15.4%, and 23.9%, respectively. The mean individual interception loss percentage for H. ammodendron (28.4%) was significantly higher than that for C. mongolicum (11.0%) and N. sphaerocarpa (10.9%) (p < 0.05), which could be ascribed to the higher canopy storage capacity and wet-canopy evaporation rate of H. ammodendron. For all shrub species, the majority proportion of interception loss occurred during canopy saturation and drying-out periods, accounting for approximately 79-85% of the cumulative interception loss. Overall, the mean local interception loss of three dominant shrub species in the ecotone removed nearly 17% of the corresponding cumulative rainfall during the growing season. These results not only provide methodological references for estimating the interception loss of sparse vegetation in dryland ecosystems, but also provide scientific insights for water resource management and ecosystem restoration in water-limited regions similar to the experimental site.


Assuntos
Chenopodiaceae , Fabaceae , Ecossistema , Chuva , Movimentos da Água , Água
11.
New Phytol ; 233(1): 546-554, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610149

RESUMO

Some plant traits may be legacies of coevolution with extinct megafauna. One example is the convergent evolution of 'divaricate' cage architectures in many New Zealand lineages, interpreted as a response to recently extinct flightless avian browsers whose ancestors arrived during the Paleogene period. Although experiments have confirmed that divaricate habit deters extant browsers, its abundance on frosty, droughty sites appears consistent with an earlier interpretation as a response to cold, dry Plio-Pleistocene climates. We used 45 protein-coding sequences from plastid genomes to reconstruct the evolutionary history of the divaricate habit in extant New Zealand lineages. Our dated phylogeny of 215 species included 91% of New Zealand eudicot divaricate species. We show that 86% of extant divaricate plants diverged from non-divaricate sisters within the last 5 Ma, implicating Plio-Pleistocene climates in the proliferation of cage architectures in New Zealand. Our results, combined with other recent findings, are consistent with the synthetic hypothesis that the browser-deterrent effect of cage architectures was strongly selected only when Plio-Pleistocene climatic constraints prevented woody plants from growing quickly out of reach of browsers. This is consistent with the abundance of cage architectures in other regions where plant growth is restricted by aridity or short frost-free periods.


Assuntos
Aves , Plantas , Animais , Nova Zelândia , Filogenia
12.
Ann Bot ; 129(5): 567-582, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35136925

RESUMO

BACKGROUND AND AIMS: Petioles are important plant organs connecting stems with leaf blades and affecting light-harvesting ability of the leaf as well as transport of water, nutrients and biochemical signals. Despite the high diversity in petiole size, shape and anatomy, little information is available regarding their structural adaptations across evolutionary lineages and environmental conditions. To fill this knowledge gap, we investigated the variation of petiole morphology and anatomy of mainly European woody species to better understand the drivers of internal and external constraints in an evolutionary context. METHODS: We studied how petiole anatomical features differed according to whole-plant size, leaf traits, thermal and hydrological conditions, and taxonomic origin in 95 shrubs and trees using phylogenetic distance-based generalized least squares models. KEY RESULTS: Two major axes of variation were related to leaf area and plant size. Larger and softer leaves are found in taller trees of more productive habitats. Their petioles are longer, with a circular outline and are anatomically characterized by the predominance of sclerenchyma, larger vessels, interfascicular areas with fibres and indistinct phloem rays. In contrast, smaller and tougher leaves are found in shorter trees and shrubs of colder or drier habitats. Their petioles have a terete outline, phloem composed of small cells and radially arranged vessels, fibreless xylem and lamellar collenchyma. Individual anatomical traits were linked to different internal and external drivers. Petiole length and vessel diameter increase with increasing leaf blade area. Collenchyma becomes absent with increasing temperature, and petiole outline becomes polygonal with increasing precipitation. CONCLUSIONS: We conclude that species' temperature and precipitation optima, plant height, and leaf area and thickness exerted a significant control on petiole anatomical and morphological structures not confounded by phylogenetic inertia. Species with different evolutionary histories but similar thermal and hydrological requirements have converged to similar petiole anatomical structures.


Assuntos
Folhas de Planta , Xilema , Anatomia Comparada , Floema , Filogenia , Folhas de Planta/anatomia & histologia , Plantas , Xilema/anatomia & histologia
13.
Ecol Appl ; 32(4): e2562, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35138007

RESUMO

Given the large and increasing amount of urban, suburban, and exurban land use on Earth, there is a need to accurately assess net primary productivity (NPP) of urban ecosystems. However, the heterogeneous and dynamic urban mosaic presents challenges to the measurement of NPP, creating landscapes that may appear more similar to a savanna than to the native landscape replaced. Studies of urban biomass have tended to focus on one type of vegetation (e.g., lawns or trees). Yet a focus on the ecology of the city should include the entire urban ecosystem rather than the separate investigation of its parts. Furthermore, few studies have attempted to measure urban aboveground NPP (ANPP) using field-based methods. Most studies project growth rates from measurements of tree diameter to estimate annual ANPP or use remote sensing approaches. In addition, field-based methods for measuring NPP do not address any special considerations for adapting such field methods to urban landscapes. Frequent planting and partial or complete removal of herbaceous and woody plants can make it difficult to accurately quantify increments and losses of plant biomass throughout an urban landscape. In this study, we review how ANPP of urban landscapes can be estimated based on field measurements, highlighting the challenges specific to urban areas. We then estimated ANPP of woody and herbaceous vegetation over a 15-year period for Baltimore, MD, USA using a combination of plot-based field data and published values from the literature. Baltimore's citywide ANPP was estimated to be 355.8 g m-2 , a result that we then put into context through comparison with other North American Long-Term Ecological Research (LTER) sites and mean annual precipitation. We found our estimate of Baltimore citywide ANPP to be only approximately half as much (or less) than ANPP at forested LTER sites of the eastern United States, and more comparable to grassland, oldfield, desert, or boreal forest ANPP. We also found that Baltimore had low productivity for its level of precipitation. We conclude with a discussion of the significance of accurate assessment of primary productivity of urban ecosystems and critical future research needs.


Assuntos
Ecossistema , Chuva , Baltimore , Biomassa , Pradaria , Árvores
14.
Am J Bot ; 109(2): 250-258, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34766624

RESUMO

PREMISE: Wood density is a crucial plant functional trait related to plant life history strategies. Its ecological importance in small-stature growth forms (e.g., shrubs) has not been extensively examined. Given that hydraulic conduit dimensions vary positively with plant height and that there is a negative relationship between conduits' diameter and wood density, I hypothesized an also negative relationship between wood density and plant height. Knowing that bark and pith proportions are significant in small-diameter stems, I additionally disentangled the contribution of wood, bark, and pith to stem density. METHODS: I determined density in small-diameter stems across 153 species spanning all major angiosperm and gymnosperm orders by considering a diversity of growth forms (trees, treelets, shrubs, vines, and hemiparasites). Stem cross sections were dissected to consider the densities of wood with bark and pith; wood with pith and without bark; wood with bark and no pith; and wood without bark and pith. Secondary growth was also measured. RESULTS: Trees showed similar wood densities as non-self-supporting vines, and both showed significantly less dense wood than treelets, shrubs, and hemiparasites. General comparisons showed that wood was significantly denser than all other tissues, and these differences did not depend on growth form. Wood density was significantly and negatively related to growth rate and pith area proportions but not to bark thickness proportion. CONCLUSIONS: An implicit negative relationship between maximum plant height and stem density emerges as a property of plants likely linked to hydraulic conductive size.


Assuntos
Magnoliopsida , Madeira , Cycadopsida , Caules de Planta , Plantas , Árvores
15.
Ecol Appl ; 31(2): e02239, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33074572

RESUMO

While invasive plant distributions are relatively well known in the eastern United States, temporal changes in species distributions and interactions among species have received little attention. Managers are therefore left to make management decisions without knowing which species pose the greatest threats based on their ability to spread, persist and outcompete other invasive species. To fill this gap, we used the U.S. National Park Service's Inventory and Monitoring Program data collected from over 1,400 permanent forest plots spanning 12 yr and covering 39 eastern national parks to analyze invasive plant trends. We analyzed trends in abundance at multiple scales, including plot frequency, quadrat frequency, and average quadrat cover. We examined trends overall, by functional group, and by species. We detected considerably more increasing than decreasing trends in invasive plant abundance. In fact, 80% of the parks in our study had at least one significant increasing trend in invasive abundance over time. Where detected, significant negative trends tended to be herbaceous or graminoid species. However, these declines were often countered by roughly equivalent increases in invasive shrubs over the same time period, and we only detected overall declines in invasive abundance in two parks in our study. Present in over 30% of plots and responsible for the steepest and greatest number of significant increases, Japanese stiltgrass (Microstegium vimineum) was the most aggressive invader in our study and is a high management priority. Invasive shrubs, especially Japanese barberry (Berberis thunbergii), Japanese honeysuckle (Lonicera japonica), multiflora rose (Rosa multiflora), and wineberry (Rubus phoenicolasius), also increased across multiple parks, and sometimes at the expense of Japanese stiltgrass. Given the added risks to human health from tick-borne diseases, invasive shrubs are a high management priority. While these findings provide critical information to managers for species prioritization, they also demonstrate the incredible management challenge that invasive plants pose in protected areas, particularly since we documented few overall declines in invasive abundance. As parks work to overcome deferred maintenance of infrastructure, our findings suggest that deferred management of natural resources, particularly invasive species, requires similar attention and long-term commitment to reverse these widespread increasing invasive trends.


Assuntos
Ecossistema , Parques Recreativos , Humanos , Espécies Introduzidas , Plantas , Poaceae , Estados Unidos
16.
Am J Bot ; 108(6): 946-957, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34160827

RESUMO

PREMISE: Rarity is a complex and central concept in ecology and conservation biology. Yet, it is still poorly understood why some species are rare and others common. Here, we aimed to understand the drivers of species rarity patterns in woody plant communities. METHODS: We analyzed the local abundance and landscape frequency of 121 woody plant species across 238 plots on American Samoa and Hawaiian islands. We first assessed whether taxonomy, life form (shrub, small tree, large tree), and dispersal syndrome (dispersed by animals or by other means) are associated with the rarity of species. We then analyzed phylogenetic patterns in plant rarity and tested whether rarity patterns are associated with species evolutionary distinctiveness and the number of species within genera and families. RESULTS: Large trees were less abundant but more frequent than shrub species. Animal-dispersed species tended to be less abundant than species dispersed by other means, while species frequency was not associated with dispersal syndromes. Relative frequency in Hawai'i exhibited a more robust phylogenetic signal than did abundance. Both evolutionary distinctiveness and taxa species richness were significantly associated with the frequency of shrub species in Hawai'i. CONCLUSIONS: Life form appears consistently associated with the rarity of species. High diversification rate is probably a key factor explaining landscape-scale rarity of native species on isolated archipelagos like Hawai'i. At the landscape scale, rarity appears to be inversely associated with evolutionary distinctiveness, but at the local scale, species abundance may be not associated with evolutionary distinctiveness.


Assuntos
Florestas , Plantas , Animais , Biodiversidade , Havaí , Ilhas do Pacífico , Filogenia
17.
Int J Biometeorol ; 65(3): 343-355, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31209600

RESUMO

Temperate deciduous shrub phenology plays a pivotal role in forest ecology by regulating the timing of suitable habitat and food of a range of organisms as well as influencing the timing and duration of the carbon uptake period especially in early spring and late autumn when trees are leafless. However, given the overwhelming influence of canopy trees on forest ecosystem functioning, shrubs are often ignored in ecosystem modeling. Isolating the shrub contribution to C flux or satellite-derived forest phenology is challenging. In addition, since shrubs are more likely to be invasive than trees, future changes to shrub species composition are likely, with consequent implications for both over- and understory species composition and ecosystem functioning. Surprisingly, given their multifaceted role, our review revealed that studies on temperate deciduous shrub phenology are limited with the majority focusing on managing invasive shrubs in USA forests. In addition, results of some studies using a large number of species from a range of geographical locations suggested that, in general, invasive shrubs leafed out earlier and retained leaves longer than native species. However, this may not be directly applicable to local conditions with a smaller range of locally adapted species. Therefore, in order to fully understand the role of shrub phenology in temperate deciduous forests, in terms of invasive species, response to climate change and subsequent influence on C balance it will be necessary to establish phenological monitoring sites in which both tree and shrub phenology are recorded concurrently across a range of geographical locations.


Assuntos
Ecossistema , Florestas , Mudança Climática , Folhas de Planta , Estações do Ano , Árvores
18.
J Environ Manage ; 295: 113053, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175510

RESUMO

The high nature conservation value of floodplain ecosystems is severely threatened by invasive alien species. Besides adversely affecting native biodiversity, these species also pose a major threat from a wider socio-ecological perspective (e.g. 'roughness' increases flood risk). Finding options to control dense shrub layers consisting of invasive alien species is therefore of high priority for multipurpose management. We studied cattle grazing impacts on the cover, composition and diversity of the herb and shrub layers in floodplain poplar plantations along the Tamis river, Serbia. Non-grazed, moderately grazed, intensively grazed and resting place stands were sampled in five locations in three sampling points. Non-grazed stands had substantially higher cover of invasive alien shrub species (on average 65%) than moderately and intensively grazed stands, and resting places (5.17, 0.02 and 0.00%, respectively), but without considerable differences between the grazing intensity categories. The number of invasive alien species in the shrub layer decreased considerably from non-grazed to intensively grazed stands. Species composition in the herb layer changed from non-grazed to intensively grazed stands, while resting places differed substantially from the other categories. Total species richness, richness of native generalist herbaceous grassland species, and the cover of palatable grasses were the highest in moderately and intensively grazed stands. Our results suggest that cattle grazing in floodplains is effective at controlling invasive alien shrub species. Furthermore, continuous moderate or intensive grazing would contribute to multifunctional management of invaded floodplains by enhancing local biodiversity, reducing flood risk, and providing additional grazing areas for the local community.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Biodiversidade , Bovinos , Inundações , Sérvia
19.
Molecules ; 26(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34946554

RESUMO

Cupressus sempervirens L., Juniperus communis L. and Cistus ladanifer L. are Mediterranean arboreal and shrub species that possess essential oils (EO) in their leaves and branches. This study aimed at characterizing the EOs obtained by steam distillation from the three species collected in different locations from Spain (Almazán, Andévalo, Barriomartín, Cerezal, Ermitas and Huéscar). For this purpose, volatiles composition was determined by GC-MS, and different bioactivities were evaluated. The highest content in terpenes was observed in C. sempervirens (Huéscar origin) followed by J. communis (Almazán origin), corresponding to 92% and 91.9% of total compounds, respectively. With exception of C. ladanifer from Cerezal that presented viridiflorol as the most abundant compound, all the three species presented in common the α-pinene as the major compound. The EOs from C. ladanifer showed high antibacterial potential, presenting MIC values from 0.3 to 1.25 mg/mL. Concerning other bioactivities, C. ladanifer EO revealed an oxidation inhibition of 83%, while J. communis showed cytotoxicity in the MCF-7 cell line, and C. sempervirens and C. ladanifer EOs exhibited the highest potential on NCI-H460 cell lines. Nevertheless, some EOs revealed toxicity against non-tumoral cells but generally presented a GI50 value higher than that of the tumor cell lines.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Cistus/química , Cupressus/química , Juniperus/química , Óleos Voláteis/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Compostos de Bifenilo/antagonistas & inibidores , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Picratos/antagonistas & inibidores
20.
Ecol Appl ; 30(6): e02119, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32160360

RESUMO

Vegetation at ecotone transitions between open and forested areas is often heavily affected by two key processes: climate change and management of large herbivore densities. These both drive woody plant state shifts, determining the location and the nature of the limit between open and tree or shrub-dominated landscapes. In order to adapt management to prevailing and future climate, we need to understand how browsing and climatic factors together affect the growth of plants at biome borders. To disentangle herbivory and climate effects, we combined long-term tree growth monitoring and dendroecology to investigate woody plant growth under different temperatures and red deer (Cervus elaphus) herbivory pressures at forest-moorland ecotones in the Scottish highlands. Reforestation and deer densities are core and conflicting management concerns in the area, and there is an urgent need for additional knowledge. We found that deer herbivory and climate had significant and interactive effects on tree growth: in the presence of red deer, pine (Pinus sylvestris) growth responded more strongly to annual temperature than in the absence of deer, possibly reflecting differing plant-plant competition and facilitation conditions. As expected, pine growth was negatively related to deer density and positively to temperature. However, at the tree population level, warming decreased growth when more than 60% of shoots were browsed. Heather (Calluna vulgaris) growth was negatively related to temperature and the direction of the response to deer switched from negative to positive when mean annual temperatures fell below 6.0°C. In addition, our models allow estimates to be made of how woody plant growth responds under specific combinations of temperature and herbivory, and show how deer management can be adapted to predicted climatic changes in order to more effectively achieve reforestation goals. Our results support the hypothesis that temperature and herbivory have interactive effects on woody plant growth, and thus accounting for just one of these two factors is insufficient for understanding plant growth mechanics at biome transitions. Furthermore, we show that climate-driven woody plant growth increases can be negated by herbivory.


Assuntos
Cervos , Herbivoria , Animais , Ecossistema , Árvores , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA