Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 412
Filtrar
1.
Cell ; 185(7): 1172-1188.e28, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35303419

RESUMO

Intestinal mucus forms the first line of defense against bacterial invasion while providing nutrition to support microbial symbiosis. How the host controls mucus barrier integrity and commensalism is unclear. We show that terminal sialylation of glycans on intestinal mucus by ST6GALNAC1 (ST6), the dominant sialyltransferase specifically expressed in goblet cells and induced by microbial pathogen-associated molecular patterns, is essential for mucus integrity and protecting against excessive bacterial proteolytic degradation. Glycoproteomic profiling and biochemical analysis of ST6 mutations identified in patients show that decreased sialylation causes defective mucus proteins and congenital inflammatory bowel disease (IBD). Mice harboring a patient ST6 mutation have compromised mucus barriers, dysbiosis, and susceptibility to intestinal inflammation. Based on our understanding of the ST6 regulatory network, we show that treatment with sialylated mucin or a Foxo3 inhibitor can ameliorate IBD.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Sialiltransferases/genética , Animais , Homeostase , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Muco/metabolismo , Sialiltransferases/metabolismo , Simbiose
2.
Proc Natl Acad Sci U S A ; 121(19): e2319057121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687790

RESUMO

Eosinophil recruitment is a pathological hallmark of many allergic and helminthic diseases. Here, we investigated chemokine receptor CCR3-induced eosinophil recruitment in sialyltransferase St3gal4-/- mice. We found a marked decrease in eosinophil extravasation into CCL11-stimulated cremaster muscles and into the inflamed peritoneal cavity of St3gal4-/- mice. Ex vivo flow chamber assays uncovered reduced adhesion of St3gal4-/- compared to wild type eosinophils. Using flow cytometry, we show reduced binding of CCL11 to St3gal4-/- eosinophils. Further, we noted reduced binding of CCL11 to its chemokine receptor CCR3 isolated from St3gal4-/- eosinophils. This was accompanied by almost absent CCR3 internalization of CCL11-stimulated St3gal4-/- eosinophils. Applying an ovalbumin-induced allergic airway disease model, we found a dramatic reduction in eosinophil numbers in bronchoalveolar lavage fluid following intratracheal challenge with ovalbumin in St3gal4-deficient mice. Finally, we also investigated tissue-resident eosinophils under homeostatic conditions and found reduced resident eosinophil numbers in the thymus and adipose tissue in the absence of ST3Gal-IV. Taken together, our results demonstrate an important role of ST3Gal-IV in CCR3-induced eosinophil recruitment in vivo rendering this enzyme an attractive target in reducing unwanted eosinophil infiltration in various disorders including allergic diseases.


Assuntos
Eosinófilos , Camundongos Knockout , Receptores CCR3 , Sialiltransferases , beta-Galactosídeo alfa-2,3-Sialiltransferase , Animais , Receptores CCR3/metabolismo , Receptores CCR3/genética , Sialiltransferases/metabolismo , Sialiltransferases/genética , Eosinófilos/metabolismo , Eosinófilos/imunologia , Camundongos , Quimiocina CCL11/metabolismo , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Líquido da Lavagem Broncoalveolar
3.
Glycobiology ; 34(7)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38785323

RESUMO

Aberrant glycosylation is a key mechanism employed by cancer cells to evade immune surveillance, induce angiogenesis and metastasis, among other hallmarks of cancer. Sialic acids, distinctive terminal glycan structures located on glycoproteins or glycolipids, are prominently upregulated across various tumor types, including colorectal cancer (CRC). Sialylated glycans modulate anti-tumor immune responses through their interactions with Siglecs, a family of glycan-binding receptors with specificity for sialic acid-containing glycoconjugates, often resulting in immunosuppression. In this paper, we investigated the immunomodulatory function of ST3Gal5, a sialyltransferase that catalyzes the addition of α2-3 sialic acids to glycosphingolipids, since lower expression of ST3Gal5 is associated with better survival of CRC patients. We employed CRISPR/Cas9 to knock out the ST3Gal5 gene in two murine CRC cell lines MC38 and CT26. Glycomics analysis confirmed the removal of sialic acids on glycolipids, with no discernible impact on glycoprotein sialylation. Although knocking out ST3Gal5 in both cell lines did not affect in vivo tumor growth, we observed enhanced levels of regulatory T cells in CT26 tumors lacking ST3Gal5. Moreover, we demonstrate that the absence of ST3Gal5 affected size and blood vessel density only in MC38 tumors. In summary, we ascertain that sialylation of glycosphingolipids has a limited influence on the anti-tumor immune response in CRC, despite detecting alterations in the tumor microenvironment, possibly due to a shift in ganglioside abundance.


Assuntos
Neoplasias Colorretais , Gangliosídeos , Sialiltransferases , Sialiltransferases/metabolismo , Sialiltransferases/genética , Gangliosídeos/metabolismo , Gangliosídeos/imunologia , Animais , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Camundongos , Linhagem Celular Tumoral , Humanos , beta-Galactosídeo alfa-2,3-Sialiltransferase
4.
Glycobiology ; 34(7)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38873803

RESUMO

Dendritic cells (DCs) are central for the initiation and regulation of appropriate immune responses. While several studies suggest important regulatory roles of sialoglycans in DC biology, our understanding is still inadequate primarily due to a lack of appropriate models. Previous approaches based on enzymatic- or metabolic-glycoengineering and primary cell isolation from genetically modified mice have limitations related to specificity, stability, and species differences. This study addresses these challenges by introducing a workflow to genetically glycoengineer the human DC precursor cell line MUTZ-3, described to differentiate and maturate into fully functional dendritic cells, using CRISPR-Cas9, thereby providing and validating the first isogenic cell model for investigating glycan alteration on human DC differentiation, maturation, and activity. By knocking out (KO) the ST6GAL1 gene, we generated isogenic cells devoid of ST6GAL1-mediated α(2,6)-linked sialylation, allowing for a comprehensive investigation into its impact on DC function. Glycan profiling using lectin binding assay and functional studies revealed that ST6GAL1 KO increased the expression of important antigen presenting and co-stimulatory surface receptors and a specifically increased activation of allogenic human CD4 + T cells. Additionally, ST6GAL1 KO induces significant changes in surface marker expression and cytokine response to TNFα-induced maturation, and it affects migration and the endocytic capacity. These results indicate that genetic glycoengineering of the isogenic MUTZ-3 cellular model offers a valuable tool to study how specific glycan structures influence human DC biology, contributing to our understanding of glycoimmunology.


Assuntos
Linfócitos T CD4-Positivos , Células Dendríticas , Ácidos Siálicos , Sialiltransferases , Fator de Necrose Tumoral alfa , Humanos , Células Dendríticas/metabolismo , Células Dendríticas/imunologia , Sialiltransferases/genética , Sialiltransferases/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Ácidos Siálicos/metabolismo , Sistemas CRISPR-Cas , Antígenos CD/genética , Antígenos CD/metabolismo , Linhagem Celular , Diferenciação Celular , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
5.
Glycobiology ; 34(5)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38438159

RESUMO

The Cre-lox system is one of the most widely used methods for lineage-specific and inducible genome editing in vivo. However, incomplete penetrance and off-target effects due to transient promoter expression in a stem or pluripotent precursor cell can be problematic and difficult to detect, especially if the target gene is not normally present in the fully differentiated but off-target cells. Yet, the loss of the target gene through the transient expression of Cre may impact the differentiation of those cells by virtue of transient expression in a precursor population. In these situations, off-target effects in an unknown precursor cell can, at best, complicate conclusions drawn from the model, and at worst, invalidate all data generated from that knockout strain. Thus, identifying Cre-driver promoter expression along entire cell lineages is crucial to improve rigor and reproducibility. As an example, transient expression in an early precursor cell has been documented in a variety of Cre strains such as the Tie2-based Cre-driver system that is used as an "endothelial cell-specific" model 1. Yet, Tie2 is now known to be transiently expressed in a stem cell upstream of both hematopoietic and endothelial cell lineages. Here, we use the Tie2 Cre-driver strain to demonstrate that due to its ubiquitous nature, plasma membrane glycans are a useful marker of both penetrance and specificity of a Cre-based knockout.


Assuntos
Células-Tronco Hematopoéticas , Integrases , Camundongos , Animais , Camundongos Transgênicos , Integrases/genética , Integrases/metabolismo , Glicosilação , Reprodutibilidade dos Testes , Células-Tronco Hematopoéticas/metabolismo
6.
Immunology ; 172(4): 517-532, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38503445

RESUMO

Sialic acid is a unique sugar moiety that resides in the distal and most accessible position of the glycans on mammalian cell surface and extracellular glycoproteins and glycolipids. The potential for sialic acid to obscure underlying structures has long been postulated, but the means by which such structural changes directly affect biological processes continues to be elucidated. Here, we appraise the growing body of literature detailing the importance of sialic acid for the generation, differentiation, function and death of haematopoietic cells. We conclude that sialylation is a critical post-translational modification utilized in haematopoiesis to meet the dynamic needs of the organism by enforcing rapid changes in availability of lineage-specific cell types. Though long thought to be generated only cell-autonomously within the intracellular ER-Golgi secretory apparatus, emerging data also demonstrate previously unexpected diversity in the mechanisms of sialylation. Emphasis is afforded to the mechanism of extrinsic sialylation, whereby extracellular enzymes remodel cell surface and extracellular glycans, supported by charged sugar donor molecules from activated platelets.


Assuntos
Diferenciação Celular , Ácido N-Acetilneuramínico , Humanos , Animais , Ácido N-Acetilneuramínico/metabolismo , Hematopoese , Processamento de Proteína Pós-Traducional , Polissacarídeos/metabolismo
7.
Prostate ; 84(11): 1067-1075, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38734979

RESUMO

INTRODUCTION: Aberrant glycosylation of proteins is an important hallmark in multiple cancers. Prostate-specific membrane antigen (PSMA), a highly glycosylated protein with 10 N-linked glycosylation sites, is an Food and Drug Administration approved theranostic for prostate cancer. However, glycosylation changes in PSMA that are associated with prostate cancer disease progression have not been fully characterized. METHODS: We investigated whether urinary PSMA sialylation correlate with high-grade prostate cancer. Urine samples were collected from men after digital rectal examination (DRE) before prostate biopsy. Lectin-antibody enzyme-linked immunoassay was used to quantify α2,3-sialyl PSMA in post-DRE urine samples from subjects with benign prostate tumors, Grade Group 1 prostate cancer and those with Grade Group ≥2 disease. RESULTS: There are significant increases in α2,3-sialylated PSMA in patients with Grade Group ≥2 disease compared to benign (p = 0.0009) and those with Grade Group 1 disease (p = 0.0063). There were no significant differences in α2,3-sialyl PSMA levels between Grade Group 1 and benign prostate tumors (p = 0.7947). CONCLUSIONS: Our study shows that there are significant differences in the abundance of α2,3-sialylated PSMA in post-DRE urines from disease stratified prostate cancer patients, and the increase is correlated with progression and disease severity. The detection of increased PSMA sialyation in post-DRE urines from patients with higher Grade Group ≥2 disease states provides novel untapped potential for the development of prognostic biomarkers for prostate cancer. Specifically, quantitation of α2,3-sialylated PSMA shows potential for discriminating between benign to intermediate grade disease, which is a significant clinical challenge in staging and risk stratification of prostate cancer.


Assuntos
Antígenos de Superfície , Biomarcadores Tumorais , Glutamato Carboxipeptidase II , Gradação de Tumores , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/urina , Neoplasias da Próstata/patologia , Neoplasias da Próstata/diagnóstico , Idoso , Glutamato Carboxipeptidase II/urina , Antígenos de Superfície/urina , Pessoa de Meia-Idade , Glicosilação , Biomarcadores Tumorais/urina
8.
Mol Hum Reprod ; 30(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38830032

RESUMO

Preterm birth is a serious pregnancy complication that affects neonatal mortality, morbidity, and long-term neurological prognosis. Predicting spontaneous preterm delivery (PTD) is important for its management. While excluding the risk of PTD is important, identifying women at high risk of PTD is imperative for medical intervention. Currently used PTD prediction parameters in clinical practice have shown high negative predictive values, but low positive predictive values. We focused on sulfated and sialylated glycocalyx changes in the uterus and vagina prior to the onset of parturition and explored the potential of electrophysiological detection of these changes as a PTD prediction parameter with a high positive predictive value. In vivo local vaginal bioelectrical impedance (VZ) was measured using two different mouse PTD models. PTD was induced in ICR mice through the subcutaneous injection of mifepristone or local intrauterine injection of lipopolysaccharide (LPS). The PTD rates were 100% and 60% post-administration of mifepristone (16-20 h, n = 4) and LPS (12-24 h, n = 20), respectively. The local VZ values (15 and 10 h after mifepristone or LPS treatment, respectively) were significantly lower in the PTD group than in the non-PTD group. Receiver operator characteristic (ROC) curve analysis of VZ at 125 kHz as a predictor of PTD showed an area under the ROC curve of 1.00 and 0.77 and positive predictive values of 1.00 and 0.86, for the mifepristone and LPS models, respectively, suggesting that local VZ value can predict PTD. Histological examination of the LPS-treated model 6 h post-treatment revealed increased expression of sulfomucins and/or sulfated proteoglycans and sialomucins in the cervical epithelium, cervical stroma and vaginal stroma. In conclusion, local VZ values can determine sulfated and sialylated glycocalyx alterations within the uterus and vagina and might be a useful PTD prediction parameter.


Assuntos
Impedância Elétrica , Camundongos Endogâmicos ICR , Nascimento Prematuro , Vagina , Animais , Feminino , Vagina/metabolismo , Vagina/efeitos dos fármacos , Vagina/patologia , Gravidez , Camundongos , Nascimento Prematuro/metabolismo , Nascimento Prematuro/diagnóstico , Mifepristona/farmacologia , Útero/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/toxicidade , Valor Preditivo dos Testes , Curva ROC , Modelos Animais de Doenças
9.
IUBMB Life ; 76(3): 161-178, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37818680

RESUMO

Sialic acid (SIA) has been reported to be a risk factor for atherosclerosis (AS) due to its high plasma levels in such patients. However, the effect of increasing SIA in circulation on endothelial function during AS progression remains unclear. In the present study, ApoE-/- mice and endothelial cells line (HUVEC cells) were applied to investigate the effect of SIA on AS progression and its potential molecular mechanism. In vivo, mice were injected intraperitoneally with Neu5Ac (main form of SIA) to keep high-level SIA in circulation. ORO, H&E, and Masson staining were applied to detect the plaque progression. In vitro, HUVECs were treated with Neu5Ac at different times, CCK-8, RT-PCR, western blot, and immunoprecipitation methods were used to analyze its effects on endothelial function and the potential involved mechanism. Results from the present study showed that high plasma levels of Neu5Ac in ApoE-/- mice could aggravate the plaque areas as well as increase necrotic core areas and collagen fiber contents. Remarkably, Neu5Ac levels in circulation displayed a positive correlation with AS plaque areas. Furthermore, results from HUVECs showed that Neu5Ac inhibited cells viability in a time/dose-dependent manner, by then induced the activation of inflammation makers such as ICAM-1 and IL-1ß. Mechanism study showed that the activation of excessive autophagy medicated by SQSTM1/p62 displayed an important role in endothelium inflammatory injury. Neu5Ac could modify SQSTM1/p62 as a sialylation protein, and then increase its level with ubiquitin binding, further inducing ubiquitination degradation and being involved in the excessive autophagy pathway. Inhibition of sialylation by P-3Fax-Neu5Ac, a sialyltransferase inhibitor, reduced the binding of SQSTM1/p62 to ubiquitin. Together, these findings indicated that Neu5Ac increased SQSTM1/p62-ubiquitin binding through sialylation modification, thereby inducing excessive autophagy and subsequent endothelial injury. Inhibition of SQSTM1/p62 sialylation might be a potential strategy for preventing such disease with high levels of Neu5Ac in circulation.


Assuntos
Aterosclerose , Ácido N-Acetilneuramínico , Humanos , Camundongos , Animais , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/farmacologia , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Apolipoproteínas E/metabolismo , Apolipoproteínas E/farmacologia , Autofagia
10.
Rheumatology (Oxford) ; 63(3): 826-836, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37326830

RESUMO

OBJECTIVE: Sialylation of the crystallizable fragment (Fc) of ACPAs, which is catalysed by ß-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) could attenuate inflammation of RA. In this study, we screened the transcription factor of ST6GAL1 and elucidated the mechanism of transcriptionally upregulating sialylation of ACPAs in B cells to explore its role in the progression of RA. METHODS: Transcription factors interacting with the P2 promoter of ST6GAL1 were screened by DNA pull-down and liquid chromatography with tandem mass spectrometry (LC-MS/MS), and verified by chromatin immunoprecipitation (ChIP), dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The function of the CCCTC-binding factor (CTCF) on the expression of ST6GAL1 and the inflammatory effect of ACPAs were verified by knocking down and overexpressing CTCF in B cells. The CIA model was constructed from B cell-specific CTCF knockout mice to explore the effect of CTCF on arthritis progression. RESULTS: We observed that the levels of ST6GAL1 and ACPAs sialylation decreased in the serum of RA patients and were negatively correlated with DAS28 scores. Subsequently, CTCF was screened and verified as the transcription factor interacting with the P2 promoter of ST6GAL1, which enhances the sialylation of ACPAs, thus weakening the inflammatory activity of ACPAs. Furthermore, the above results were also verified in the CIA model constructed from B cell-specific CTCF knockout mice. CONCLUSION: CCCTC-binding factor is the specific transcription factor of ß-galactoside α-2,6-sialyltransferase 1 in B cells that upregulates the sialylation of ACPAs in RA and attenuates the disease progression.


Assuntos
Ácidos Aminossalicílicos , Artrite Reumatoide , Galactosídeos , Fatores de Transcrição , Animais , Camundongos , Humanos , Fator de Ligação a CCCTC , Anticorpos Antiproteína Citrulinada , Cromatografia Líquida , Espectrometria de Massas em Tandem , Camundongos Knockout , Sialiltransferases/genética
11.
Glycoconj J ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958800

RESUMO

Altered glycosylation is a common feature of cancer cells. Some subsets of glycans are found to be frequently enriched on the tumor cell surface and implicated in different tumor phenotypes. Among these, changes in sialylation have long been associated with metastatic cell behaviors such as invasion and enhanced cell survival. Sialylation typically exists in three prominent linkages: α2,3, α2,6, and α2,8, catalyzed by a group of sialyltransferases. The aberrant expression of all three linkages has been related to cancer progression. The increased α2,6 sialylation on N-glycans catalyzed by ß-galactoside α2,6 sialyltransferase 1 (ST6Gal1) is frequently observed in many cancers. In contrast, functions of α2,3 sialylation on N-glycans catalyzed by at least three ß-galactoside α2,3-sialyltransferases, ST3Gal3, ST3Gal4, and ST3Gal6 remain elusive due to a possibility of compensating for one another. In this minireview, we briefly describe functions of sialylation and recent findings that different α2,3 sialyltransferases specifically modify target proteins, as well as sialylation regulatory mechanisms vis a complex formation among integrin α3ß1, Golgi phosphoprotein 3 (GOLPH3), phosphatidylinositol 4-kinase IIα (PI4KIIα), focal adhesion kinase (FAK) and sialyltransferase, which suggests a new concept for the regulation of glycosylation in cell biology.

12.
J Pathol ; 261(1): 71-84, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37550801

RESUMO

Aberrant glycosylation is a universal feature of cancer cells, and cancer-associated glycans have been detected in virtually every cancer type. A common change in tumour cell glycosylation is an increase in α2,6 sialylation of N-glycans, a modification driven by the sialyltransferase ST6GAL1. ST6GAL1 is overexpressed in numerous cancer types, and sialylated glycans are fundamental for tumour growth, metastasis, immune evasion, and drug resistance, but the role of ST6GAL1 in prostate cancer is poorly understood. Here, we analyse matched cancer and normal tissue samples from 200 patients and verify that ST6GAL1 is upregulated in prostate cancer tissue. Using MALDI imaging mass spectrometry (MALDI-IMS), we identify larger branched α2,6 sialylated N-glycans that show specificity to prostate tumour tissue. We also monitored ST6GAL1 in plasma samples from >400 patients and reveal ST6GAL1 levels are significantly increased in the blood of men with prostate cancer. Using both in vitro and in vivo studies, we demonstrate that ST6GAL1 promotes prostate tumour growth and invasion. Our findings show ST6GAL1 introduces α2,6 sialylated N-glycans on prostate cancer cells and raise the possibility that prostate cancer cells can secrete active ST6GAL1 enzyme capable of remodelling glycans on the surface of other cells. Furthermore, we find α2,6 sialylated N-glycans expressed by prostate cancer cells can be targeted using the sialyltransferase inhibitor P-3FAX -Neu5Ac. Our study identifies an important role for ST6GAL1 and α2,6 sialylated N-glycans in prostate cancer progression and highlights the opportunity to inhibit abnormal sialylation for the development of new prostate cancer therapeutics. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias da Próstata , Sialiltransferases , Masculino , Humanos , Glicosilação , Polissacarídeos/química , Polissacarídeos/metabolismo , Reino Unido , beta-D-Galactosídeo alfa 2-6-Sialiltransferase , Antígenos CD/metabolismo
13.
Appl Microbiol Biotechnol ; 108(1): 224, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376550

RESUMO

The occurrence of autophagy in recombinant Chinese hamster ovary (rCHO) cell culture has attracted attention due to its effects on therapeutic protein production. Given the significance of glycosylation in therapeutic proteins, this study examined the effects of autophagy-inhibiting chemicals on sialylation of Fc-fusion glycoproteins in rCHO cells. Three chemical autophagy inhibitors known to inhibit different stages were separately treated with two rCHO cell lines that produce the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44. All autophagy inhibitors significantly decreased the sialylation of Fc-fusion glycoprotein in both cell lines. The decrease in sialylation of Fc-fusion glycoprotein is unlikely to be attributed to the release of intracellular enzymes, given the high cell viability and low activity of extracellular sialidases. Interestingly, the five intracellular nucleotide sugars remained abundant in cells treated with autophagy inhibitors. In the mRNA expression profiles of 27 N-glycosylation-related genes using the NanoString nCounter system, no significant differences in gene expression were noted. With the positive effect of supplementing nucleotide sugar precursors on sialylation, attempts were made to enhance the levels of intracellular nucleotide sugars by supplying these precursors. The addition of nucleotide sugar precursors to cultures treated with inhibitors successfully enhanced the sialylation of Fc-fusion glycoproteins compared to the control culture. This was particularly evident under mild stress conditions and not under relatively severe stress conditions, which were characterized by a high decrease in sialylation. These results suggest that inhibiting autophagy in rCHO cell culture decreases sialylation of Fc-fusion glycoprotein by constraining the availability of intracellular nucleotide sugars. KEY POINTS: •  The autophagy inhibition in rCHO cell culture leads to a significant reduction in the sialylation of Fc-fusion glycoprotein. •  The pool of five intracellular nucleotide sugars remained highly abundant in cells treated with autophagy inhibitors. •  Supplementation of nucleotide sugar precursors effectively restores decreased sialylation, particularly under mild stress conditions but not in relatively severe stress conditions.


Assuntos
Autofagia , Glicoproteínas , Animais , Cricetinae , Células CHO , Cricetulus , Glicoproteínas/genética , Nucleotídeos , Açúcares
14.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673867

RESUMO

Sialyltransferase-catalyzed membrane protein and lipid glycosylation plays a vital role as one of the most abundant post-translational modifications and diversification reactions in eukaryotes. However, aberrant sialylation has been associated with cancer malignancy and metastasis. Sialyltransferases thus represent emerging targets for the development of small molecule cancer drugs. Herein, we report the inhibitory effects of a recently discovered lithocholic acid derivative FCW393 on sialyltransferase catalytic activity, integrin sialyation, cancer-associated signal transduction, MDA-MB-231 and B16F10 cell migration and invasion, and in in vivo studies, on tumor growth, metastasis, and angiogenesis. FCW393 showed effective and selective inhibition of the sialyltransferases ST6GAL1 (IC50 = 7.8 µM) and ST3GAL3 (IC50 = 9.45 µM) relative to ST3GAL1 (IC50 > 400 µM) and ST8SIA4 (IC50 > 100 µM). FCW393 reduced integrin sialylation in breast cancer and melanoma cells dose-dependently and downregulated proteins associated with the integrin-regulated FAK/paxillin and GEF/Rho/ROCK pathways, and with the VEGF-regulated Akt/NFκB/HIF-1α pathway. FCW393 inhibited cell migration (IC50 = 2.6 µM) and invasion in in vitro experiments, and in in vivo studies of tumor-bearing mice, FCW393 reduced tumor size, angiogenesis, and metastatic potential. Based on its demonstrated selectivity, cell permeability, relatively low cytotoxicity (IC50 = 55 µM), and high efficacy, FCW393 shows promising potential as a small molecule experimental tool compound and a lead for further development of a novel cancer therapeutic.


Assuntos
Movimento Celular , Sialiltransferases , Sialiltransferases/metabolismo , Sialiltransferases/antagonistas & inibidores , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Metástase Neoplásica , Feminino , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácido Litocólico/farmacologia
15.
Mod Rheumatol ; 34(3): 523-529, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37300805

RESUMO

OBJECTIVES: Decreased sialylation of IgG-Fc glycans has been reported in autoimmune diseases, but its role in systemic lupus erythematosus (SLE) is not fully understood. In this study, we examined the pathogenicity of IgG desialylation and its association with Th17 in SLE using an animal model. METHODS: B6SKG mice, which develop lupus-like systemic autoimmunity due to the ZAP70 mutation, were used to investigate the pathogenicity of IgG desialylation. The proportion of sialylated IgG was compared between B6SKG and wild-type mice with or without ß-glucan treatment-induced Th17 expansion. Anti-interleukin (IL)-23 and anti-IL-17 antibodies were used to examine the role of Th17 cells in IgG glycosylation. Activation-induced cytidine deaminase-specific St6gal1 conditionally knockout (cKO) mice were generated to examine the direct effect of IgG desialylation. RESULTS: The proportions of sialylated IgG were similar between B6SKG and wild-type mice in the steady state. However, IgG desialylation was observed after ß-glucan-induced Th17 expansion, and nephropathy also worsened in B6SKG mice. Anti-IL-23/17 treatment suppressed IgG desialylation and nephropathy. Glomerular atrophy was observed in the cKO mice, suggesting that IgG desialylation is directly involved in disease exacerbation. CONCLUSIONS: IgG desialylation contributes to the progression of nephropathy, which is ameliorated by blocking IL-17A or IL-23 in an SLE mouse model.


Assuntos
Lúpus Eritematoso Sistêmico , beta-Glucanas , Camundongos , Animais , Células Th17 , Virulência , Lúpus Eritematoso Sistêmico/genética , Modelos Animais de Doenças , Imunoglobulina G
16.
Glycobiology ; 33(3): 182-187, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36728702

RESUMO

Sialidases are found in viruses, bacteria, fungi, avians, and mammals. Mammalian sialidases differ in their specificity, optimum pH, subcellular localization, and tissue expression. To date, four genes encoding mammalian sialidases (NEU1-4) have been cloned. This review examines the functional impact of NEU4 sialidase on complex physiological and cellular processes. The intracellular localization and trafficking of NEU4 and its potential target molecules are discussed along with its impact on cancer, lysosomal storage disease, and cellular differentiation. Modulation of NEU4 expression may be essential not only for the breakdown of sialylated glycoconjugates, but also in the activation or inactivation of functionally important cellular events.


Assuntos
Diferenciação Celular , Doenças por Armazenamento dos Lisossomos , Neoplasias , Neuraminidase , Animais , Humanos , Diferenciação Celular/genética , Doenças por Armazenamento dos Lisossomos/genética , Doenças por Armazenamento dos Lisossomos/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neuraminidase/genética , Neuraminidase/metabolismo
17.
Glycobiology ; 33(12): 1155-1171, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37847613

RESUMO

Aberrant glycosylation is a hallmark of cancer and is not just a consequence, but also a driver of a malignant phenotype. In prostate cancer, changes in fucosylated and sialylated glycans are common and this has important implications for tumor progression, metastasis, and immune evasion. Glycans hold huge translational potential and new therapies targeting tumor-associated glycans are currently being tested in clinical trials for several tumor types. Inhibitors targeting fucosylation and sialylation have been developed and show promise for cancer treatment, but translational development is hampered by safety issues related to systemic adverse effects. Recently, potent metabolic inhibitors of sialylation and fucosylation were designed that reach higher effective concentrations within the cell, thereby rendering them useful tools to study sialylation and fucosylation as potential candidates for therapeutic testing. Here, we investigated the effects of global metabolic inhibitors of fucosylation and sialylation in the context of prostate cancer progression. We find that these inhibitors effectively shut down the synthesis of sialylated and fucosylated glycans to remodel the prostate cancer glycome with only minor apparent side effects on other glycan types. Our results demonstrate that treatment with inhibitors targeting fucosylation or sialylation decreases prostate cancer cell growth and downregulates the expression of genes and proteins important in the trajectory of disease progression. We anticipate our findings will lead to the broader use of metabolic inhibitors to explore the role of fucosylated and sialylated glycans in prostate tumor pathology and may pave the way for the development of new therapies for prostate cancer.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Glicosilação , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Processamento de Proteína Pós-Traducional , Polissacarídeos/metabolismo
18.
Glycobiology ; 33(3): 215-224, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36651496

RESUMO

The monocyte adhesion to endothelial cells is an early step in chronic inflammation. Interferon-γ (IFN-γ) is regarded as a master regulator of inflammation development. However, the significance and mechanisms of IFN-γ in the monocyte adhesion to endothelial cells remains largely unknown. IFN-γ up-regulates PD-L1 on various types of cells. Here, we performed flow cytometry to examine the contribution of IFN-γ-induced PD-L1 expression on monocyte adhesion to endothelial cells. Up-regulation of PD-L1 by IFN-γ enhanced the adhesion of monocytes to endothelial cells. By immunoprecipitation and lectin blot, PD-L1 in endothelial cells interacted with CD169/Siglec 1 in monocytes depending on the α2,3-sialylation of PD-L1. ST3Gal family (ST3ß-galactoside α-2,3-sialyltransferase) was the major glycosyltransferase responsible for the α2,3-sialylation of membrane proteins. Down-regulation of ST3Gal4 by RNAinterference partially reduced the α2,3-sialylation of PD-L1 and the PD-L1-CD169 interaction. Finally, purified PD-L1 protein with α2,3-sialylation, but not PD-L1 protein without α2,3-sialylation, partially reduced IFN-γ-induced monocyte adhesion to endothelial cells. These findings provide evidence that the interaction between PD-L1 and CD169 promoted monocyte adhesion to endothelial cells and might elucidate a new mechanism of monocyte adhesion to endothelial cells.


Assuntos
Células Endoteliais , Monócitos , Humanos , Células Endoteliais/metabolismo , Inflamação , Interferon gama/farmacologia , Interferon gama/metabolismo , Monócitos/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Antígeno B7-H1/metabolismo
19.
Glycobiology ; 33(11): 943-953, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-37379323

RESUMO

The IgG antibody class forms an important basis of the humoral immune response, conferring reciprocal protection from both pathogens and autoimmunity. IgG function is determined by the IgG subclass, as defined by the heavy chain, as well as the glycan composition at N297, the conserved site of N-glycosylation within the Fc domain. For example, lack of core fucose promotes increased antibody-dependent cellular cytotoxicity, whereas α2,6-linked sialylation by the enzyme ST6Gal1 helps to drive immune quiescence. Despite the immunological significance of these carbohydrates, little is known about how IgG glycan composition is regulated. We previously reported that mice with ST6Gal1-deficient B cells have unaltered IgG sialylation. Likewise, ST6Gal1 released into the plasma by hepatocytes does not significantly impact overall IgG sialylation. Since IgG and ST6Gal1 have independently been shown to exist in platelet granules, it was possible that platelet granules could serve as a B cell-extrinsic site for IgG sialylation. To address this hypothesis, we used a platelet factor 4 (Pf4)-Cre mouse to delete ST6Gal1 in megakaryocytes and platelets alone or in combination with an albumin-Cre mouse to also remove it from hepatocytes and the plasma. The resulting mouse strains were viable and had no overt pathological phenotype. We also found that despite targeted ablation of ST6Gal1, no change in IgG sialylation was apparent. Together with our prior findings, we can conclude that in mice, neither B cells, the plasma, nor platelets have a substantial role in homeostatic IgG sialylation.


Assuntos
Imunoglobulina G , Fatores Imunológicos , Animais , Camundongos , Linfócitos B/metabolismo , Glicosilação , Imunoglobulina G/metabolismo , Polissacarídeos , Sialiltransferases/genética , Sialiltransferases/metabolismo , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
20.
Cancer Metastasis Rev ; 41(1): 107-129, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34967926

RESUMO

Metastasis is considered to be responsible for 90% of cancer-related deaths. Although it is clinically evident that metastatic patterns vary by primary tumor type, the molecular mechanisms underlying the site-specific nature of metastasis are an area of active investigation. One mechanism that has emerged as an important player in this process is glycosylation, or the addition of sugar moieties onto protein and lipid substrates. Glycosylation is the most common post-translational modification, occurring on more than 50% of translated proteins. Many of those proteins are either secreted or expressed on the cell membrane, thereby making glycosylation an important mediator of cell-cell interactions, including tumor-microenvironment interactions. It has been recently discovered that alteration of glycosylation patterns influences cancer metastasis, both globally and in a site-specific manner. This review will summarize the current knowledge regarding the role of glycosylation in the tropism of cancer cells for several common metastatic sites, including the bone, lung, brain, and lymph nodes.


Assuntos
Neoplasias Pulmonares , Membrana Celular/metabolismo , Glicosilação , Humanos , Neoplasias Pulmonares/patologia , Metástase Neoplásica/patologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA