Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 345
Filtrar
1.
Nano Lett ; 24(5): 1660-1666, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38266180

RESUMO

Scalable and addressable integrated manipulation of qubits is crucial for practical quantum information applications. Different waveguides have been used to transport the optical and electrical driving pulses, which are usually required for qubit manipulation. However, the separated multifields may limit the compactness and efficiency of manipulation and introduce unwanted perturbation. Here, we develop a tapered fiber-nanowire-electrode hybrid structure to realize integrated optical and microwave manipulation of solid-state spins at nanoscale. Visible light and microwave driving pulses are simultaneously transported and concentrated along an Ag nanowire. Studied with spin defects in diamond, the results show that the different driving fields are aligned with high accuracy. The spatially selective spin manipulation is realized. And the frequency-scanning optically detected magnetic resonance (ODMR) of spin qubits is measured, illustrating the potential for portable quantum sensing. Our work provides a new scheme for developing compact, miniaturized quantum sensors and quantum information processing devices.

2.
Nano Lett ; 24(19): 5904-5912, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700588

RESUMO

Stretchable electroluminescent devices represent an emerging optoelectronic technology for future wearables. However, their typical construction on sub-millimeter-thick elastomers has limited moisture permeability, leading to discomfort during long-term skin attachment. Although breathable textile displays may partially address this issue, they often have distinct visual appearances with discrete emissions from fibers or fiber junctions. This study introduces a convenient procedure to create stretchable, permeable displays with continuous luminous patterns. The design utilizes ultrathin nanocomposite devices embedded in a porous elastomeric microfoam to achieve high moisture permeability. These displays also exhibit excellent deformability, low-voltage operation, and excellent durability. Additionally, the device is decorated with fluorinated silica nanoparticles to achieve self-cleaning and washable capabilities. The practical implementation of these nanocomposite devices is demonstrated by creating an epidermal counter display that allows intimate integration with the human body. These developments provide an effective design of stretchable and breathable displays for comfortable wearing.

3.
Nano Lett ; 24(4): 1309-1315, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38258741

RESUMO

Electrically percolating nanowire networks are among the most promising candidates for next-generation transparent electrodes. Scientific interest in these materials stems from their intrinsic current distribution heterogeneity, leading to phenomena like percolating pathway rerouting and localized self-heating, which can cause irreversible damage. Without an experimental technique to resolve the current distribution and an underpinning nonlinear percolation model, one relies on empirical rules and safety factors to engineer materials. We introduce Bose-Einstein condensate microscopy to address the longstanding problem of imaging active current flow in 2D materials. We report on performance improvement of this technique whereby observation of dynamic redistribution of current pathways becomes feasible. We show how this, combined with existing thermal imaging methods, eliminates the need for assumptions between electrical and thermal properties. This will enable testing and modeling individual junction behavior and hot-spot formation. Investigating both reversible and irreversible mechanisms will contribute to improved performance and reliability of devices.

4.
Small ; : e2309645, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716922

RESUMO

Nanofibrils are known to improve the cohesion of supraparticle (SP) assemblies. However, tailoring the morphology of SPs using nanofibrillar additives is not well developed. Herein, ß-lactoglobulin amyloid nanofibrils (ANFs) are investigated as means to impart morphological control over the assembly process of spray-dried SPs composed of 10-100 nm silica nanoparticles (SiNPs). Phytoglycogen (PG) and silver nanowires (AgNWs) are used to assess the influence of building block softness and aspect ratio, respectively. The results demonstrate that ANFs promote the onset of structural arrest during the particle consolidation enabling the preparation of corrugated SP morphologies. The critical ANF loading required to induce SP corrugation increases by roughly 1 vol% for every 10-nm increase in SiNP diameter, while the ensuing ANF network density decreases with SiNP volume fraction and increases with SiNP diameter. Results imply that ANF length starts to become influential when it approaches the SiNP diameter. ANFs display a reduced effectiveness in altering soft PG SP morphology compared with hard SiNPs of comparable size. In SiNP-AgNW SPs, ANFs induce a toroid-to-corrugated morphology transformation for sufficiently large SPs and small SiNPs. The results illustrate that ANFs are effective additives for the morphological engineering of spray-dried SPs important for numerous applications.

5.
Small ; 20(3): e2301841, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649218

RESUMO

Graphene nanoribbons (GNRs), a quasi-one-dimensional form of graphene, have gained tremendous attention due to their potential for next-generation nanoelectronic devices. The chemical unzipping of carbon nanotubes is one of the attractive fabrication methods to obtain single-layered GNRs (sGNRs) with simple and large-scale production.  The authors recently found that unzipping from double-walled carbon nanotubes (DWNTs), rather than single- or multi-walled, results in high-yield production of crystalline sGNRs. However, details of the resultant GNR structure, as well as the reaction mechanism, are not fully understood due to the necessity of nanoscale spectroscopy. In this regard, silver nanowire-based tip-enhanced Raman spectroscopy (TERS) is applied for single GNR analysis and investigated ribbon-to-ribbon heterogeneity in terms of defect density and edge structure generated through the unzipping process.  The authors found that sGNRs originated from the inner walls of DWNTs showed lower defect densities than those from the outer walls. Furthermore, TERS spectra of sGNRs exhibit a large variety in graphitic Raman parameters, indicating a large variation in edge structures. This work at the single GNR level reveals, for the first time, ribbon-to-ribbon heterogeneity that can never be observed by diffraction-limited techniques and provides deeper insights into unzipped GNR structure as well as the DWNT unzipping reaction mechanism.

6.
Small ; 20(25): e2307328, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38196157

RESUMO

In the development of nanomaterial electrodes for improved electrocatalytic activity, much attention is paid to the compositions, lattice, and surface morphologies. In this study, a new concept to enhance electrocatalytic activity is proposed by reducing impedance inside nanomaterial electrodes. Gold nanodendrites (AuNDs) are grown along silver nanowires (AgNWs) on flexible polydimethylsiloxane (PDMS) support. The AuNDs/AgNWs/PDMS electrode affords an oxidative peak current density of 50 mA cm-2 for ethanol electrooxidation, a value ≈20 times higher than those in the literature do. Electrochemical impedance spectroscopy (EIS) demonstrates the significant contribution of the AgNWs to reduce impedance. The peak current densities for ethanol electrooxidation are decreased 7.5-fold when the AgNWs are electrolytically corroded. By in situ surface-enhanced Raman spectroscopy (SERS) and density functional theory (DFT) simulation, it is validated that the ethanol electrooxidation favors the production of acetic acid with undetectable CO, resulting in a more complete oxidation and long-term stability, while the AgNWs corrosion greatly decreases acetic acid production. This novel strategy for fabricating nanomaterial electrodes using AgNWs as a charge transfer conduit may stimulate insights into the design of nanomaterial electrodes.

7.
Small ; : e2405000, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152934

RESUMO

Fiber electronics booms as a new important field but is currently limited by the challenge of finding both highly flexible and conductive fiber electrodes. Here, all-metal fibers based on nanowires are discovered. Silver nanowires are continuously assembled into robust fibers by salt-induced aggregation and then firmly stabilized by plasmonic welding. The nanowire network structures provide them both high flexibility with moduli at the level of MPa and conductivities up to 106 S m-1. They also show excellent electrochemical properties such as low impedance and high electrochemically active surface area. Their stable chronic single-neuron recording is further demonstrated with good biocompatibility in vivo. These new fiber materials may provide more opportunities for the future development of fiber electronics.

8.
Small ; 20(29): e2309859, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38377282

RESUMO

Designing and fabricating highly efficient oxygen evolution reaction (OER) electrocatalytic materials for water splitting is a promising and practical approach to green and sustainable low-carbon energy systems. Herein, a facile in situ growth self-template strategy by using ZIF-67 as a consumable layered double hydroxides (LDHs) template and silver nanowires (AgNWs) as 1D conductive cascaded substrate to controllably synthesize the target AgNWs@CoFe-LDH composites with unique hollow shell sugar gourd-like structure and enhanced directional electron transport effect is reported. The AgNWs exhibit the key functions of the close connection of CoFe-LDH nanocages and the support of the directional electron transport effect in the composite catalyst inducing electrons directionally moving from CoFe-LDH to AgNWs. Meanwhile, the CoFe-LDH nanocages with ultrathin nanosheets and hollow structural properties show abundant active sites for electrocatalytic oxygen generation. The versatile AgNWs@CoFe-LDH catalyst with optimized components, enhanced directional electron transport, and synergistic effect achieves high OER performance with the overpotential of 207 mV and long-term 50 h stability at 10 mA cm-2 in an alkaline medium. Moreover, in-depth insights into the microstructure, structure-activity relationships, identification of key intermediate species, and a proton-coupled four-electron OER mechanism based on experimental discovery and theoretical calculation are also demonstrated.

9.
Nanotechnology ; 35(37)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38897181

RESUMO

While silver nanowires (Ag NWs) have been demonstrated as a highly efficient transparent conducting material, they suffer from strong light scattering, which is quantified by a large haze factor (HF) in the optical spectrum. Here we investigate the influence of the dielectric environment on the light scattering of Ag NWs by comparing experimental measurements and simulations. In air, two peaks on the HF spectra are observed experimentally at the wavelength ofλI= 350 nm andλII= 380 nm and are attributed by simulations to the influence of the Ag NWs pentagonal shape on the localized surface plasmon resonance. The relative intensity between the two peaks is found to be dependent on whether the Ag NWs are in contact with the glass substrate or not. The HF behaviour in the near IR region seems to be dominated by Rayleigh scattering following simulations results. Dielectric environments of Ag NWs with various refractive indexes were obtained experimentally by the conformal deposition of different metal oxide coatings using atomic layer deposition, including Al-doped zinc oxide, Al2O3and SiO2coatings. The HF is found to be correlated with the refractive index environment in terms of HF peaks position, intensity and broadening. This trend of HF peaks is supported by a theoretical model to understand the optical mechanism behind this phenomenon.

10.
Nanotechnology ; 35(32)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38648780

RESUMO

Flexible piezoresistive pressure sensors are gaining significant attention, particularly in the realm of flexible wearable electronic skin. Here, a flexible piezoresistive pressure sensor was developed with a broad sensing range and high sensitivity. We achieved this by curing polydimethylsiloxane (PDMS) on sandpaper, creating a PDMS film as the template with a micro-protrusion structure. The core sensing layer was formed using a composite of silver nanowires (AgNWs) and waterborne polyurethane (WPU) with a similar micro-protrusion structure. The sensor stands out with its exceptional sensitivity, showing a value of 1.04 × 106kPa-1with a wide linear range from 0 to 27 kPa. It also boasts a swift response and recovery time of 160 ms, coupled with a low detection threshold of 17 Pa. Even after undergoing more than 1000 cycles, the sensor continues to deliver stable performance. The flexible piezoresistive pressure sensor based on AgNWs/WPU composite film (AWCF) can detect small pressure changes such as pulse, swallowing, etc, which indicates that the sensor has great application potential in monitoring human movement and flexible wearable electronic skin.


Assuntos
Dimetilpolisiloxanos , Nanofios , Poliuretanos , Pressão , Prata , Dispositivos Eletrônicos Vestíveis , Poliuretanos/química , Nanofios/química , Prata/química , Humanos , Dimetilpolisiloxanos/química , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Movimento
11.
Nanotechnology ; 35(17)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38262038

RESUMO

Silver nanowires (AgNWs) have attractive applications in the fabrication of flexible electronics because of their adequate electrical conductivity, mechanical properties, and oxidation resistance. However, the film produced by AgNW ink needs to be sintered at temperatures above 200 °C to obtain high electrical conductivity, which is incompatible with commonly used flexible substrates such as paper or polymer materials. In this study, the AgNW network was decorated byin situreduced Ag particles (AgPs) to improve the structural integrity and conductivity of the film. After sintering at 80 °C, the pores and voids within the AgNW network were filled with Ag particles smaller than 200 nm, and the porosity of the film was markedly reduced. The lowest resistivity value was 3.9 × 10-5Ω cm after sintering at 100 °C, only 10.8% and 8.5% of the resistivity values of the films produced from AgNW and ion inks, respectively. During sintering, Ag nucleated on the surface of AgNWs, and its growth and agglomeration resulted in interconnections between the AgNWs and Ag particles. Thereafter, the bridging and filling effect of the Ag particles facilitated the formation of a compact and firm network, improving the film conductivity. The line film printed from the composite ink with 10 layers exhibited a low resistivity of 7.3 × 10-7Ω·m. Even after 5000 bending cycles, the resistivity of the line only increased by 4.47 × 10-6Ω·cm from the initial value. The composite ink reported in this study is a promising candidate for the low-cost printing of ultralow-power-consumption wearable electronic devices.

12.
Sensors (Basel) ; 24(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732927

RESUMO

Nanocomposites are materials of special interest for the development of flexible electronic, optical, and mechanical devices in applications such as transparent conductive electrodes and flexible electronic sensors. These materials take advantage of the electrical, chemical, and mechanical properties of a polymeric matrix, especially in force sensors, as well as the properties of a conductive filler such as silver nanowires (AgNWs). In this work, the fabrication of a force sensor using AgNWs synthesized via the polyol chemical technique is presented. The nanowires were deposited via drop-casting in polyvinyl alcohol (PVA) to form the active (electrode) and resistive (nanocomposite) sensor films, with both films separated by a cellulose acetate substrate. The dimensions of the resulting sensor are 35 mm × 40 mm × 0.1 mm. The sensor shows an applied force ranging from 0 to 3.92 N, with a sensitivity of 0.039 N. The sensor stand-off resistance, exceeding 50 MΩ, indicates a good ability to detect changes in applied force without an external force. Additionally, studies revealed a response time of 10 ms, stabilization of 9 s, and a degree of hysteresis of 1.9%. The voltage response of the sensor under flexion at an angle of 85° was measured, demonstrating its functionality over a prolonged period. The fabricated sensor can be used in applications that require measuring pressure on irregular surfaces or systems with limited space, such as for estimating movement in robot joints.

13.
Nano Lett ; 23(23): 11174-11183, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38047765

RESUMO

Stretchable conductive nanocomposites are essential for deformable electronic devices. These conductors currently face significant limitations, such as insufficient deformability, significant resistance changes upon stretching, and drifted properties during cyclic deformations. To tackle these challenges, we present an electrically self-healing and ultrastretchable conductor in the form of bilayer silver nanowire/liquid metal microcapsule nanocomposites. These nanocomposites utilize silver nanowires to establish their initial excellent conductivity. When the silver nanowire networks crack during stretching, the microcapsules are ruptured to release the encased liquid metal for recovering the electrical properties. This self-healing capability allows the nanocomposite to achieve ultrahigh stretchability for both uniaxial and biaxial strains, minor changes in resistance during stretching, and stable resistance after repetitive deformations. The conductors have been used to create skin-attachable electronic patches and stretchable light-emitting diode arrays with enhanced robustness. These developments provide a bioinspired strategy to enhance the performance and durability of conductive nanocomposites.

14.
Molecules ; 29(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611837

RESUMO

Silver (Ag) nanowires, as an important one-dimensional (1D) nanomaterial, have garnered wide attention, owing to their applications in electronics, optoelectronics, sensors, and other fields. In this study, an alternative hydrothermal route was developed to synthesize Ag nanowires via modified reduction of Ag+. Silver sulfamate plays an important role in the formation of Ag nanowires via controlled release of free Ag+. Results of controlled experiments and characterizations such as UV-vis spectroscopy, FTIR, XPS, and 1H NMR revealed that sulfamic acid does not function as a reductant, supporting by the generation of free Ag+ instead of Ag nanostructures in hydrothermally treated silver sulfamate solution. The initial reduction of Ag+ was induced by the combination of poly (vinylpyrrolidone) (PVP) end group and degradation products. This phenomenon was supported by abundant free Ag+ in the mixed preheated silver sulfamatic and preheated PVP aqueous solutions, indicating a second and distinct Ag+ autocatalytic reduction. Thus, the roles of different reagents and Ag+ reduction must be studied for nanomaterial syntheses.

15.
Small ; 19(50): e2304033, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649175

RESUMO

Stretchable strain sensors suffer the trade-off between sensitivity and linear sensing range. Developing sensors with both high sensitivity and wide linear range remains a formidable challenge. Different from conventional methods that rely on the structure design of sensing nanomaterial or substrate, here a heterogeneous-surface strategy for silver nanowires (AgNWs) and MXene is proposed to construct a hierarchical microcrack (HMC) strain sensor. The heterogeneous surface with distinct differences in cracks and adhesion strengths divides the sensor into two regions. One region contributes to high sensitivity through penetrating microcracks of the AgNW/MXene composite film during stretching. The other region maintains conductive percolation pathways to provide a wide linear sensing range through network microcracks. As a result, the HMC sensor exhibits ultrahigh sensitivity (gauge factor ≈ 244), broad linear range (ɛ = 60%, R2 ≈ 99.25%), and fast response time (<30 ms). These merits are confirmed in the detection of large and subtle human motions and digital joint movement for Morse coding. The manipulation of cracks on the heterogeneous surface provides a new paradigm for designing high-performance stretchable strain sensors.

16.
Small ; 19(52): e2302335, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37661587

RESUMO

Strong, conductive, and flexible materials with improving ion accessibility have attracted significant attention in electromagnetic interference (EMI) and foldable wearable electronics. However, it still remains a great challenge to realize high performance at the same time for both properties. Herein, a microscale structural design combined with nanostructures strategy to fabricate TOCNF(F)/Ti3 C2 Tx (M)@AgNW(A) composite films via a facile vacuum filtration process followed by hot pressing (TOCNF = TEMPO-oxidized cellulose nanofibrils, NW = nanowires) is described. The comparison reveals that different microscale structures can significantly influence the properties of thin films, especially their electrochemical properties. Impressively, the ultrathin MA/F/MA film with enhanced layer in the middle exhibits an excellent tensile strength of 107.9 MPa, an outstanding electrical conductivity of 8.4 × 106 S m-1 , and a high SSE/t of 26 014.52 dB cm2 g-1 . The assembled asymmetric MA/F/MA//TOCNF@CNT (carbon nanotubes) supercapacitor leads to a significantly high areal energy density of 49.08 µWh cm-2 at a power density of 777.26 µW cm-2 . This study proposes an effective strategy to circumvent the trade-off between EMI performance and electrochemical properties, providing an inspiration for the fabrication of multifunctional films for a wide variety of applications in aerospace, national defense, precision instruments, and next-generation electronics.

17.
Nanotechnology ; 35(5)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37890475

RESUMO

Transparent conducting films (TCFs) made by the assembly/deposition of silver nanowires (Ag NWs) are widely used to manufacture flexible electronics such as touch screens, heaters, displays, and organic light-emitting diodes. Controlling the dimensions (length and diameter) of the nanowires is key in obtaining TCFs with the desired optoelectronic properties, namely sheet resistance and optical transparency. This work describes a combined experimental and theoretical investigation on the optimization of the NW dimensions to fabricate high-quality TCFs. Ag NWs of different dimensions are synthesized by the modified polyol method and the average diameter and length of the wires are tailored over a wide range, 35-150 nm and 12-130µm respectively, by controlling the synthesis parameters such as reaction conditions, stabilizing agents, and growth promoters. The synthesized NWs are spin coated on glass substrates to form TCFs. Comparing the films with different lengths, but identical diameters, enabled the quantification of the effect of length on the optoelectronic properties of the TCFs. Similarly, the effect of NW diameter is also studied. A non-uniformity factor is defined to evaluate the uniformity of the TCF and the transmittance of the NW network is shown to be inversely proportional to its area coverage. The sheet conductance versus the normalized number density is plotted for the different concentrations of NWs to extract a conductivity exponent that agrees well with the theoretical predictions. For thin film networks, the relation between the transmittance and sheet resistance provides the percolative figure of merit (FoM) as a fitting parameter. A large FoM is desirable for a good-performing TCF and the synthesis conditions to achieve this are optimized.

18.
Nanotechnology ; 34(28)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37040718

RESUMO

Transition metal dichalcogenide (TMDC) monolayers with their direct band gap in the visible to near-infrared spectral range have emerged over the past years as highly promising semiconducting materials for optoelectronic applications. Progress in scalable fabrication methods for TMDCs like metal-organic chemical vapor deposition (MOCVD) and the ambition to exploit specific material properties, such as mechanical flexibility or high transparency, highlight the importance of suitable device concepts and processing techniques. In this work, we make use of the high transparency of TMDC monolayers to fabricate transparent light-emitting devices (LEDs). MOCVD-grown WS2is embedded as the active material in a scalable vertical device architecture and combined with a silver nanowire (AgNW) network as a transparent top electrode. The AgNW network was deposited onto the device by a spin-coating process, providing contacts with a sheet resistance below 10 Ω sq-1and a transmittance of nearly 80%. As an electron transport layer we employed a continuous 40 nm thick zinc oxide (ZnO) layer, which was grown by atmospheric pressure spatial atomic layer deposition (AP-SALD), a precise tool for scalable deposition of oxides with defined thickness. With this, LEDs with an average transmittance over 60% in the visible spectral range, emissive areas of several mm2and a turn-on voltage of around 3 V are obtained.

19.
Nanotechnology ; 35(1)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37774687

RESUMO

Filter cloth brush-coating (FCBC), using soft filter cloth as a brush-coating medium, in conjunction with viscous silver nanowire (AgNW) conductive solution, is used to prepare AgNW conductive films. The density and uniformity of AgNWs deposited on the substrate are controlled by the interplay between the filter cloth aperture, the conductive solution viscosity, and the brush-coating speed. Further, with appropriate AgNW concentration and flow rate, uniform AgNW transparent conductive film with sheet resistance of 18 Ω sq-1and transmittance of 94% at 550 nm is acquired by FCBC. Due to the precise control of the coating process in FCBC, large-area uniform AgNW conductive film fabricated on printing paper has a low non-uniformity factor of 1.2% at a sheet resistance of 19.0 Ω sq-1. The resultant paper-based AgNW film heater shows sensitive and stable heating performance. FCBC shows great potential in producing large-area uniform AgNW films on various substrates.

20.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298270

RESUMO

Shape-controlled synthesis is an effective method for controlling the physicochemical properties of nanomaterials, especially single-crystal nanomaterials, but it is difficult to control the morphology of single-crystal metallic nanomaterials. Silver nanowires (AgNWs) are regarded as key materials for the new generation of human-computer interaction, which can be applied in large-scale flexible and foldable devices, large-size touch screens, transparent LED films, photovoltaic cells, etc. When used on a large scale, the junction resistance will be generated at the overlap between AgNWs and the conductivity will decrease. When stretched, the overlap of AgNWs will be easily disconnected, which will lead to a decrease in electrical conductivity or even system failure. We propose that in situ silver nanonets (AgNNs) can solve the above two problems. The AgNNs exhibited excellent electrical conductivity (0.15 Ω∙sq-1, which was 0.2 Ω∙sq-1 lower than the 0.35 Ω∙sq-1 square resistance of AgNWs) and extensibility (the theoretical tensile rate was 53%). In addition to applications in flexible stretchable sensing and display industries, they also have the potential to be used as plasmonic materials in molecular recognition, catalysis, biomedicine and other fields.


Assuntos
Nanofios , Humanos , Prata , Catálise , Condutividade Elétrica , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA