Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
J Exp Bot ; 75(2): 642-657, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37158162

RESUMO

Lateral roots are a major component of root system architecture, and lateral root count (LRC) positively contributes to yield under drought in chickpea. To understand the genetic regulation of LRC, a biparental mapping population derived from two chickpea accessions having contrasting LRCs was genotyped by sequencing, and phenotyped to map four major quantitative trait loci (QTLs) contributing to 13-32% of the LRC trait variation. A single- nucleotide polymorphism tightly linked to the locus contributing to highest trait variation was located on the coding region of a gene (CaWIP2), orthologous to NO TRANSMITTING TRACT/WIP domain protein 2 (NTT/WIP2) gene of Arabidopsis thaliana. A polymorphic simple sequence repeat (SSR) in the CaWIP2 promoter showed differentiation between low versus high LRC parents and mapping individuals, suggesting its utility for marker-assisted selection. CaWIP2 promoter showed strong expression in chickpea apical root meristem and lateral root primordia. Expression of CaWIP2 under its native promoter in the Arabidopsis wip2wip4wip5 mutant rescued its rootless phenotype to produce more lateral roots than the wild-type plants, and led to formation of amyloplasts in the columella. CaWIP2 expression also induced the expression of genes that regulate lateral root emergence. Our study identified a gene-based marker for LRC which will be useful for developing drought-tolerant, high-yielding chickpea varieties.


Assuntos
Cicer , Locos de Características Quantitativas , Humanos , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Cicer/genética , Genótipo , Marcadores Genéticos
2.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38673916

RESUMO

Tobacco is an ideal model plant in scientific research. G-quadruplex is a guanine-rich DNA structure, which regulates transcription and translation. In this study, the prevalence and potential function of G-quadruplexes in tobacco were systematically analyzed. In tobacco genomes, there were 2,924,271,002 G-quadruplexes in the nuclear genome, 430,597 in the mitochondrial genome, and 155,943 in the chloroplast genome. The density of the G-quadruplex in the organelle genome was higher than that in the nuclear genome. G-quadruplexes were abundant in the transcription regulatory region of the genome, and a difference in G-quadruplex density in two DNA strands was also observed. The promoter of 60.4% genes contained at least one G-quadruplex. Compared with up-regulated differentially expressed genes (DEGs), the G-quadruplex density in down-regulated DEGs was generally higher under drought stress and salt stress. The G-quadruplex formed by simple sequence repeat (SSR) and its flanking sequence in the promoter region of the NtBBX (Nitab4.5_0002943g0010) gene might enhance the drought tolerance of tobacco. This study lays a solid foundation for further research on G-quadruplex function in tobacco and other plants.


Assuntos
Quadruplex G , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Nicotiana , Estresse Fisiológico , Nicotiana/genética , Estresse Fisiológico/genética , Regiões Promotoras Genéticas , Secas , Estresse Salino/genética
3.
BMC Genomics ; 24(1): 136, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944913

RESUMO

BACKGROUND: Repetitive DNA sequences accounts for over 80% of maize genome. Although simple sequence repeats (SSRs) account for only 0.03% of the genome, they have been widely used in maize genetic research and breeding as highly informative codominant DNA markers. The genome-wide distribution and polymorphism of SSRs are not well studied due to the lack of high-quality genome DNA sequence data. RESULTS: In this study, using data from high-quality de novo-sequenced maize genomes of five representative maize inbred lines, we revealed that SSRs were more densely present in telomeric region than centromeric region, and were more abundant in genic sequences than intergenic sequences. On genic sequences, tri- and hexanucleotide motifs were more abundant in CDS sequence and some mono- and dinucleotide motifs were more abundant in UTR sequences. Median length and chromosomal density of SSRs were both narrowly range-bound, with median length of 14-18 bp and genome-wide average density of 3355.77 bp/Mbp. LTR-RTs of < 0.4 Mya had higher SSR density (4498-4992 bp/Mbp). The genome-specific and motif-specific SSR polymorphism were studied. Their potential breeding applications were discussed. CONCLUSIONS: We found that the median length of SSR sequences of different SSR motifs was nearly constant. SSR density in genic regions was much higher than intergenic regions. In addition, SSR density at LTR-RTs of different evolutionary ages varied in a narrow range. The SSRs and their LTR-RT carriers evolved at an equal rate. All these observations indicated that SSR length and density were under control of yet unknown evolutionary forces. The chromosome region-specific and motif-specific SSR polymorphisms we observed supported the notion that SSR polymorphism was invaluable genome resource for developing highly informative genome and gene markers in maize genetic research and molecular breeding.


Assuntos
Genoma de Planta , Zea mays , Zea mays/genética , Melhoramento Vegetal , Genômica , Marcadores Genéticos , Repetições de Microssatélites/genética
4.
Mol Breed ; 43(12): 83, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38009099

RESUMO

Low temperature and cold damage are natural factors that seriously reduce wheat yield. Thus, how to improve the cold resistance of wheat has been the focus of wheat breeders and geneticists. However, the genetic improvement for this trait has been slow, mainly because cold resistance is a complex quantitative trait and field phenotypic identification is relatively difficult. Therefore, the discovery, mapping, and cloning of the cold resistance genes of wheat provide a theoretical basis for the genetic improvement of wheat against cold resistance and facilitate the analysis of the molecular mechanisms of cold resistance in wheat. This study used the wheat line H261 and its EMS mutants LF2099 and XiNong 239 as materials. Cold trait segregation occurred in the F2 generation of mutants LF2099 and XiNong 239 at a 15:1 separation ratio. Genetic analysis showed that two dominant overlapping genes, temporarily named Wcr-3 and Wcr-4, control cold resistance in wheat. Furthermore, a combined BSA and SNP array established that Wcr-3 is between BU100519 (SSR marker) and AX-94843669 (SNP marker). The markers are 1.32 cM apart, corresponding to the 5.41 Mb physical interval on the Chinese Spring 2B chromosome with 67 functionally annotated genes. Wcr-4 is located between AX-94657955 (SNP marker) and LC-23 (SSR marker), which are 1.79 cM apart, corresponding to a 2.35 Mb physical interval on the Chinese Spring 2D chromosome, which contains 66 functionally annotated genes. Wcr-3 and Wcr-4 are two new cold resistance genes, laying the foundation for their fine mapping and cloning. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01425-w.

5.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240329

RESUMO

Breeding fruit species is time-consuming and expensive. With few exceptions, trees are likely the worst species to work with in terms of genetics and breeding. Most are characterized by large trees, long juvenile periods, and intensive agricultural practice, and environmental variability plays an important role in the heritability evaluations of every single important trait. Although vegetative propagation allows for the production of a significant number of clonal replicates for the evaluation of environmental effects and genotype × environment interactions, the spaces required for plant cultivation and the intensity of work necessary for phenotypic surveys slow down the work of researchers. Fruit breeders are very often interested in fruit traits: size, weight, sugar and acid content, ripening time, fruit storability, and post-harvest practices, among other traits relevant to each individual species. The translation of trait loci and whole-genome sequences into diagnostic genetic markers that are effective and affordable for use by breeders, who must choose genetically superior parents and subsequently choose genetically superior individuals among their progeny, is one of the most difficult tasks still facing tree fruit geneticists. The availability of updated sequencing techniques and powerful software tools offered the opportunity to mine tens of fruit genomes to find out sequence variants potentially useful as molecular markers. This review is devoted to analysing what has been the role of molecular markers in assisting breeders in selection processes, with an emphasis on the fruit traits of the most important fruit crops for which examples of trustworthy molecular markers have been developed, such as the MDo.chr9.4 marker for red skin colour in apples, the CCD4-based marker CPRFC1, and LG3_13.146 marker for flesh colour in peaches, papayas, and cherries, respectively.


Assuntos
Frutas , Locos de Características Quantitativas , Humanos , Mapeamento Cromossômico/métodos , Frutas/genética , Melhoramento Vegetal , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
BMC Plant Biol ; 22(1): 334, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35820829

RESUMO

BACKGROUND: Wuzhimaotao (Radix Fici Hirtae) originates from the dry root of Ficus hirta (Moraceae), which is widely known as a medical and edible plant distributed in South China. As the increasing demand for Wuzhimaotao, the wild F. hirta has been extremely reduced during the past years. It is urgent to protect and rationally develop the wild resources of F. hirta for its sustainable utilization. However, a lack of genetic background of F. hirta makes it difficult to plan conservation and breeding strategies for this medical plant. In the present study, a total of 414 accessions of F. hirta from 7 provinces in southern China were evaluated for the population genetics using 9 polymorphic SSR markers. RESULTS: A mean of 17.1 alleles per locus was observed. The expected heterozygosity (He) varied from 0.142 to 0.861 (mean = 0.706) in nine SSR loci. High genetic diversity (He = 0.706, ranged from 0.613 to 0.755) and low genetic differentiation among populations (G'ST = 0.147) were revealed at population level. In addition, analysis of molecular variance (AMOVA) indicated that the principal molecular variance existed within populations (96.2%) was significantly higher than that among populations (3.8%). Meanwhile, the three kinds of clustering methods analysis (STRUCTURE, PCoA and UPGMA) suggested that the sampled populations were clustered into two main genetic groups (K = 2). Mantel test showed a significant correlation between geographic and genetic distance among populations (R2 = 0.281, P < 0.001). Pollen flow, seed flow and/or geographical barriers might be the main factors that formed the current genetic patterns of F. hirta populations. CONCLUSIONS: This is a comprehensive study of genetic diversity and population structure of F. hirta in southern China. We revealed the high genetic diversity and low population differentiation in this medicinal plant and clarified the causes of its current genetic patterns. Our study will provide novel insights into the exploitation and conservation strategies for F. hirta.


Assuntos
Ficus , Cruzamento , Ficus/genética , Variação Genética , Genética Populacional , Repetições de Microssatélites/genética
7.
Breed Sci ; 72(2): 181-187, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36275937

RESUMO

Mentha is a complex genus encompassing many species as a consequence of their interspecific hybridization and polyploidy. Southeast Asian mints have been poorly distinguished though they are widely used for culinary and medical purposes. In this study, we have analyzed Southeast Asian mints and known varieties as well as a related Lamiaceae species (Nepeta sp.) using simple sequence repeat (SSR) markers and leaf morphology. Two types of mints were clearly distinguished based on their venation pattern and leaf shape index. We developed 12 SSR markers that allowed good amplification in the Mentha and another Lamiaceae species. In the SSR-based phylogram, the Mentha lines could be delimited into groups I-VI. The Southeast Asian mints divided into groups I and II, and the phylogram separated most of the available species, with groups I and II containing the known species M. × cordifolia and M. arvensis, respectively. The separation of the two groups was supported by a population structure analysis. The SSR markers developed in this study enabled the simultaneous classification of mints and will help improve our understanding of the genetic composition of known mint varieties and as yet unclassified Southeast Asian mints.

8.
Physiol Mol Biol Plants ; 28(5): 1049-1060, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35722519

RESUMO

Cotton originated from ancestors in the Gossypium genus that grew in semi-desert habitats. As a result, it is adversely affected by low temperatures especially during germination and the first weeks of growth. Despite this, there are relatively few molecular studies on cold stress in cotton. This limitation may present a future breeding handicap, as recent years have witnessed increased low temperature damage to cotton production. Cold tolerance is a sustainable approach to obtain good production in case of extreme cold. In the present study, 110 Upland cotton (Gossypium hirsutum) genotypes were evaluated for cold tolerance at the germination stage. We identified vigorous genotypes with cold-related parameters that outperformed the panel's average performance ( x ¯ = 76.9% CG, 83.9% CSI, 167.5 CWVI). Molecular genetic diversity analysis with 101 simple sequence repeat (SSR) markers yielding 416 loci was used to select tolerant genotypes that could be important materials for breeding this trait. A total of 16 marker-cold tolerance trait associations (p < 0.005) were identified with 10 of them having major effects (PVE > 10%). Based on the positions of these markers, candidate genes for cold tolerance in the G. hirsutum genome were identified. Three of these markers (BNL0569, CIR081 and CIR202) are important candidates for use in marker-assisted breeding for cold tolerance because they mapped to genes previously associated with cold tolerance in other plant species such as Arabidopsis thaliana, rice and tomato. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01184-6.

9.
Mol Biol Rep ; 48(9): 6387-6400, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34426904

RESUMO

BACKGROUND: Perilla frutescens (Lamiaceae) is distributed in East Asia and is classified into var. frutescens and crispa. P. frutescens is multipurpose crop for human health because of a variety of secondary metabolites such as phenolic compound and essential oil. However, a lack of genetic information has hindered the development and utilization of Perilla genotypes. METHODS AND RESULTS: This study was performed to develop expressed sequence tag-simple sequence repeat (EST-SSR) markers from P. frutescens var. crispa (wild type) and Antisperill (a mutant cultivar) and used them to assess the genetic diversity of, and relationships among, 94 P. frutescens genotypes. We obtained 65 Gb of sequence data comprising 632,970 transcripts by de novo RNA-sequencing. Of the 14,780 common SSRs, 102 polymorphic EST-SSRs were selected using in silico polymerase chain reaction (PCR). Overall, successful amplification from 58 EST-SSRs markers revealed remarkable genetic diversity and relationships among 94 P. frutescens genotypes. In total, 268 alleles were identified, with an average of 4.62 alleles per locus (range 2-11 alleles/locus). The average polymorphism information content (PIC) value was 0.50 (range 0.04-0.86). In phylogenetic and population structure analyses, the genotypes formed two major groups: Group I (var. crispa) and Group II (var. frutescens). CONCLUSION: This results suggest that 58 novel EST-SSR markers derived from wild-type cultivar (var. crispa) and its mutant cultivar (Antisperill) have potential uses for population genetics and recombinant inbred line mapping analyses, which will provide comprehensive insights into the genetic diversity and relationship of P. frutescens.


Assuntos
Etiquetas de Sequências Expressas , Repetições de Microssatélites/genética , Mutação , Perilla frutescens/genética , Polimorfismo Genético , Transcriptoma/genética , Alelos , Produtos Agrícolas/genética , Loci Gênicos , Genótipo , Filogenia , RNA-Seq/métodos
10.
Breed Sci ; 71(5): 594-600, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35087323

RESUMO

Tea cultivars have been bred by individual selection of landraces and by crossbreeding, but the validation of the parentage is limited. In this study, we performed parentage analysis of 79 tea cultivars in Japan based on SSR markers to confirm or identify the parent-offspring relationships among them. The effectiveness of nine SSR markers for parentage analysis was validated by comparing them to the existing cleaved amplified polymorphic sequence markers. The former markers were detectable more alleles than the latter. Simulation of parentage analysis of the tea cultivars predicted biparental origins for 12 cultivars ('Houshun', 'Mie ryokuhou no. 1', 'Surugawase', 'Tenmyo', 'Yamanoibuki', 'Harumidori', 'Koushun', 'Minekaori', 'Okumusashi', 'Saemidori', 'Sofu', and 'Toyoka'), in the first five of which candidate parents of yet-to-be-defined pedigree were newly identified. Comparisons of a total of 41 SSR genotypes confirmed the newly-identified parentages of 'Asahi' for 'Tenmyo', 'Rokurou' for 'Houshun', 'Surugawase', and 'Yamanoibuki', and 'Yamatomidori' for 'Mie ryokuhou no. 1'. The maternity of seven cultivars out of the 12 was also confirmed with chloroplast DNA sequences. Uniparental origins were confirmed for 25 cultivars. This parentage analysis has improved our knowledge of tea pedigrees and will aid in the development of new cultivars.

11.
BMC Plant Biol ; 20(1): 510, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33167894

RESUMO

BACKGROUND: Paeonia decomposita, endemic to China, has important ornamental, medicinal, and economic value and is regarded as an endangered plant. The genetic diversity and population structure have seldom been described. A conservation management plan is not currently available. RESULTS: In the present study, 16 pairs of simple sequence repeat (SSR) primers were used to evaluate the genetic diversity and population structure. A total of 122 alleles were obtained with a mean of 7.625 alleles per locus. The expected heterozygosity (He) varied from 0.043 to 0.901 (mean 0.492) in 16 primers. Moderate genetic diversity (He = 0.405) among populations was revealed, with Danba identified as the center of genetic diversity. Mantel tests revealed a positive correlation between geographic and genetic distance among populations (r = 0.592, P = 0.0001), demonstrating consistency with the isolation by distance model. Analysis of molecular variance (AMOVA) indicated that the principal molecular variance existed within populations (73.48%) rather than among populations (26.52%). Bayesian structure analysis and principal coordinate analysis (PCoA) supported the classification of the populations into three clusters. CONCLUSIONS: This is the first study of the genetic diversity and population structure of P. decomposita using SSR. Three management units were proposed as conservation measures. The results will be beneficial for the conservation and exploitation of the species, providing a theoretical basis for further research of its evolution and phylogeography.


Assuntos
Conservação dos Recursos Naturais , DNA de Plantas/genética , Espécies em Perigo de Extinção/estatística & dados numéricos , Variação Genética , Genética Populacional/estatística & dados numéricos , Paeonia/genética , Alelos , China , Perda de Heterozigosidade , Repetições de Microssatélites , Filogenia , Filogeografia
12.
Am J Bot ; 107(11): 1567-1576, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33150610

RESUMO

PREMISE: Polyploidy may serve to contribute to range size if autopolyploid cytotypes are adapted to differing ecological conditions. This study aims to establish the geographic distribution of cytotypes within the giant goldenrod (Solidago gigantea), and to assess whether cytotypes exhibit differing ecological tolerances and morphology. METHODS: A range-wide set of 629 Solidago gigantea individuals was obtained through field collecting, sampling from herbarium specimens, and incorporating existing chromosome counts. Cytotype of each unknown sample was estimated by observing allele numbers at twelve microsatellite loci, a strategy that was assessed by comparing estimated to known cytotype in 20 chromosome-counted samples. Abiotic ecological differentiation was assessed for two transitions: diploid-tetraploid and tetraploid-hexaploid. Morphological differentiation among cytotypes was assessed. RESULTS: Microsatellite repeat variation accurately estimated cytotype in 85% of samples for which ploidy was known. Applying this approach to samples of unknown ploidy established that the three cytotypes are non-randomly distributed. Although niche modeling and MANOVA approaches identified significant differences in macro-climatic conditions for both cytotype transitions, the tetraploid to hexaploid transition was more substantial. Leaf length and width did not differ among cytotypes. Although leaf vestiture exhibited strong trends, no absolute differences were observed among cytotypes. CONCLUSIONS: With the largest such study to date, we established niche transitions among giant goldenrod cytotypes of differing magnitudes. Collectively, this suggests that whole-genome duplication has contributed to Solidago gigantea's large range.


Assuntos
Solidago , Diploide , Humanos , Ploidias , Poliploidia , Solidago/genética , Tetraploidia
13.
Mol Biol Rep ; 47(6): 4911-4915, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32328862

RESUMO

Microsatellite primers were developed in Lippia alba complex to better understanding the origins and evolution of the species. We sought to increase the numbers of available simple sequence repeat (SSR) markers. We performed low-coverage (~ twofold) genomic DNA sequencing of a diploid accession and generated a de novo assembly comprising 175,572 contigs. Sixteen SSR loci were selected and of these 13 SSR loci were successfully amplified in 20 L. alba tetraploid accessions and in 12 other Lippia species. Only one SSR locus was monomorphic, whereas 12 loci were polymorphic, yielding one to nine alleles. The heterozygosity was similar among markers, with values of 0.274-0.485; the polymorphism information content values varied from 0.237 to 0.367. These markers were successfully amplified in related species with 85% of transferability on average. Thus, we demonstrate the utility of including a de novo assembly step to obtain SSR markers from low-coverage genomic datasets.


Assuntos
Lippia/genética , Repetições de Microssatélites/genética , Alelos , Mapeamento Cromossômico/métodos , Primers do DNA/genética , DNA de Plantas/genética , Frequência do Gene/genética , Genótipo , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo Genético/genética , Análise de Sequência de DNA/métodos
14.
Mol Biol Rep ; 47(3): 1979-1990, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32040708

RESUMO

Trans-polyisoprene rubber is produced in the tissues of leaves, bark, and fruit of Eucommia ulmoides and is considered an important energy source. Transcript profiles of two tissues from E. ulmoides cv. Qinzhong No. 3, leaf and fruit, were analysed using the Illumina HiSeq 2000 system. In total, 104 million clean reads were obtained and assembled into 58,863 unigenes. Through gene functional classification, 28,091 unigenes (47.72%) were annotated and 65 unigenes have been hypothesized to encode proteins involved in terpenoid biosynthesis. In addition, 10,041 unigenes were detected as differentially expressed unigenes, and 29 of them were putatively related to terpenoid biosynthesis. The synthesis of trans-polyisoprene rubbers in E. ulmoides was hypothesised to be dominated by the mevalonate pathway. Farnesyl diphosphate synthase 2 (FPPS2) was considered a key component in the biosynthesis of trans-polyprenyl diphosphate. Rubber elongation factor 3 (REF3) might be involved in stabilising the membrane of rubber particles in E. ulmoides. To date, 351 simple sequence repeats (SSRs) were validated as polymorphisms from eight E. ulmoides plants (two parent plants and six F1 individuals), and these could act as molecular markers for genetic map density increase and breeding improvement of E. ulmoides.


Assuntos
Vias Biossintéticas , Eucommiaceae/genética , Perfilação da Expressão Gênica/métodos , Repetições de Microssatélites , DNA de Plantas , Eucommiaceae/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Análise de Sequência de RNA , Terpenos/metabolismo
15.
Mol Biol Rep ; 47(10): 8305-8310, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32974841

RESUMO

Xenocypris davidi is one of the most economically important freshwater fish in China. However, few molecular markers have been reported for this species, impeding in-depth population genetic, dispersal, and gene flow studies. In the present study, a batch of novel polymorphic microsatellites from the genome of X. davidi were isolated and characterized using high-throughput sequencing. A total of 20 microsatellite markers were isolated. Analysis of 33 individuals revealed an average of 7.35 alleles per locus, ranging from 3 to 18. The observed and expected heterozygosities ranged from 0.3 to 1 and from 0.426 to 0.93, respectively. Only one tested locus significantly deviated from Hardy-Weinberg equilibrium. 18 microsatellite loci were highly polymorphic (PIC > 0.5). These newly isolated microsatellite markers would be useful to study the population genetics and stock management of X. davidi.


Assuntos
Alelos , Cyprinidae/genética , Loci Gênicos , Heterozigoto , Repetições de Microssatélites , Polimorfismo Genético , Animais
16.
BMC Plant Biol ; 19(1): 358, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31419947

RESUMO

BACKGROUND: Blackgram [Vigna mungo (L.) Hepper], is an important legume crop of Asia with limited genomic resources. We report a comprehensive set of genic simple sequence repeat (SSR) and single nucleotide polymorphism (SNPs) markers using Illumina MiSeq sequencing of transcriptome and its application in genetic variation analysis and mapping. RESULTS: Transcriptome sequencing of immature seeds of wild blackgram, V. mungo var. silvestris by Illumina MiSeq technology generated 1.9 × 107 reads, which were assembled into 40,178 transcripts (TCS) with an average length of 446 bp covering 2.97 GB of the genome. A total of 38,753 CDS (Coding sequences) were predicted from 40,178 TCS and 28,984 CDS were annotated through BLASTX and mapped to GO and KEGG database resulting in 140 unique pathways. The tri-nucleotides were most abundant (39.9%) followed by di-nucleotide (30.2%). About 60.3 and 37.6% of SSR motifs were present in the coding sequences (CDS) and untranslated regions (UTRs) respectively. Among SNPs, the most abundant substitution type were transitions (Ts) (61%) followed by transversions (Tv) type (39%), with a Ts/Tv ratio of 1.58. A total of 2306 DEGs were identified by RNA Seq between wild and cultivar and validation was done by quantitative reverse transcription polymerase chain reaction. In this study, we genotyped SNPs with a validation rate of 78.87% by High Resolution Melting (HRM) Assay. CONCLUSION: In the present study, 1621genic-SSR and 1844 SNP markers were developed from immature seed transcriptome sequence of blackgram and 31 genic-SSR markers were used to study genetic variations among different blackgram accessions. Above developed markers contribute towards enriching available genomic resources for blackgram and aid in breeding programmes.


Assuntos
Marcadores Genéticos , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Transcriptoma , Vigna/genética , Perfilação da Expressão Gênica , Sementes/metabolismo
17.
Planta ; 249(6): 1863-1874, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30859306

RESUMO

MAIN CONCLUSION: This DNA fingerprinting test confirmed 195 unique Corylus sp. accessions that were used to build a reference database for identity verification of unknown hazelnut trees from three locations in Ontario. Hazelnut is one of the most profitable tree nuts worldwide. Development of a hazelnut industry in Ontario is urgently required, but economically important cultivars must be genetically verified first in order to meet industry standards. Traditional methods for cultivar identification are largely trait-based and unreliable. In this study, a multiplexed fingerprinting test was modified to allow for hazelnut cultivar discrimination at the DNA level. Fourteen highly polymorphic SSR markers covering the 11 linkage groups of Corylus genome were PCR amplified in multiplex using fluorescent-labelled primers. PCR conditions and primer physical properties were optimized to generate a clear signal for each locus. The 14 SSRs were used to fingerprint 195 unique Corylus accessions collected from the USDA-NCGR. Fragment sizes were subjected to a UPGMA clustering analysis which separated Corylus accessions based on species and geographic origin. For validation purposes, hazelnut leaves from three locations in Ontario were collected for identity verification using this DNA fingerprinting test. As a result, 33.3% of the unknown trees were duplicates of seven distinct genotypes and a small percentage (8.3%) of these were identical to reference Corylus hybrids. These results reflect common mislabelling issues and genotype duplications that can prevent a uniform plant propagation system. Implementation of this test together with the addition of more unique accessions to the reference database will help verification of trueness-to-type of economically important cultivars for the hazelnut industry.


Assuntos
Corylus/genética , Impressões Digitais de DNA , Bases de Dados de Ácidos Nucleicos , Genoma de Planta/genética , Ligação Genética , Genótipo , Técnicas de Genotipagem , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase Multiplex , Fenótipo , Filogenia
18.
Am J Bot ; 106(8): 1116-1125, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31334845

RESUMO

PREMISE: Although autopolyploidy is common among dominant Great Plains grasses, the distribution of cytotypes within a given species is typically poorly understood. This study aims to establish the geographic distribution of cytotypes within buffalograss (Buchloë dactyloides) and to assess whether individual cytotypes have differing ecological tolerances. METHODS: A range-wide set of 578 B. dactyloides individuals was obtained through field collecting and sampling from herbarium specimens. The cytotype of each sample was estimated by determining allele numbers at 13 simple sequence repeat loci, a strategy that was assessed by comparing estimated to known cytotype in 79 chromosome-counted samples. Ecological differentiation between the dominant tetraploid and hexaploid cytotypes was assessed with analyses of macroclimatic variables. RESULTS: Simple sequence repeat variation accurately estimated cytotype in 89% of samples from which a chromosome count had been obtained. Applying this approach to samples of unknown ploidy established that diploids and pentaploids are rare, with the common tetraploid and hexaploid cytotypes generally occurring in sites to the north/west (tetraploid) or south/east (hexaploid) portions of the species range. Both MANOVA and niche modeling approaches identified significant but subtle differences in macroclimatic conditions at the set of locations occupied by these two dominant cytotypes. CONCLUSIONS: Incorporating chromosome count vouchers and cytotype-estimated herbarium records allowed us to perform the largest study of cytotype niche differentiation to date. Buffalograss cytotypes differ greatly in frequency, the common tetraploid and hexaploid cytotypes are non-randomly distributed, and these two cytotypes are subtly ecologically differentiated.


Assuntos
Diploide , Poliploidia , Humanos , Ploidias , Poaceae , Tetraploidia
19.
Biochem Genet ; 57(5): 607-622, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30825077

RESUMO

Red-flowered strawberry is a new ornamental flower derived from intergeneric hybridization (Fragaria × Potentilla). To date, few molecular markers have been reported for this plant. RNA sequencing provides a relatively fast and low-cost approach for large-scale detection of simple sequence repeats (SSRs). In the present study, we profiled the transcriptome of red-flowered strawberry by Illumina HiSeq 2500 to identify SSRs related to petal color. Based on 2 million clean reads of red and white flowers from red-flowered strawberry hybrids, we assembled 91,835 unigenes with an average length of 717 bp. After functional annotation and prediction, there were 47,058 unigenes; of these, 26,861 had a gene ontology annotation, with 14,264 SSR loci. Mononucleotide SSRs were the predominant repeat type (47.20%, n = 6724), followed by di- (32.50%, n = 4641), tri- (19.10%, n = 2729), tetra- (0.90%, n = 132), hexa- (0.2%, n = 21), and penta- (0.10%, n = 16) nucleotide repeats. The most frequent di-, tri-, and tetra-nucleotide repeats were AG/CT, AAG/CTT, and AAAG/CTTT, respectively. PCR amplification with 105 SSR primer pairs yielded four bands specific to red flowers, namely UgRFsr57622, UgRFsr94149, UgRFsr40142, and UgRFsr54608; corresponding 4 trait-specific markers were found to co-segregate with white and red flower color in hybrid population, demonstrating that the genic SSR marker is useful to discriminate between white and red flowers in strawberry. Markers to discriminate flower color in red-flowered strawberry will be useful for early selection of progeny and for breeding management.


Assuntos
Flores , Fragaria , Repetições de Microssatélites , Pigmentação/genética , Transcriptoma , Flores/genética , Flores/metabolismo , Fragaria/genética , Fragaria/metabolismo , Perfilação da Expressão Gênica , Marcadores Genéticos
20.
Breed Sci ; 69(1): 179-185, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31086496

RESUMO

Brassica rapa or B. napus vegetables for eating as young inflorescences and stalks are called "nabana". Japanese nabana includes "flower-bud type" and "stem-and-leaf type". Chinese and European types are also known (cai-xin, zicaitai, and broccoletto). We classified nabana belonging to B. rapa and other B. rapa vegetables. In a simple sequence repeat-based phylogram, 49 ingroup samples were classified into four groups (I-IV). Flower-bud and stem-and-leaf types were separated into groups I and III, respectively, with a slight overlap in group II. Cai-xin and non-heading Chinese cabbages were included in group IV. Broccoletto was placed in group III, close to turnips. Zicaitai cultivars were included in group II. We tested for clubroot resistance (CR) and its marker genotypes in nabana because of their agronomical importance. Ten cultivars were resistant to group 4 pathogen but not to group 2. Most of the CR cultivars had heterozygous resistance alleles in the CRb and Crr1 loci, consistent with inoculation tests. Our results suggest that Japanese nabana lines and foreign types were differentiated according to their consumption parts and cultivar origins, respectively. This study elucidates the relationships and CR properties of nabana and provides valuable information for the breeding of nabana cultivars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA