RESUMO
Depression is a significant concern among astronauts, yet the molecular mechanisms underlying spaceflight-induced depression remain poorly understood. MicroRNAs (miRNAs) have emerged as potential regulators of neuropsychiatric disorders, including depression, but their specific role in space-induced depression remains unexplored. This study aimed to elucidate the involvement of candidate miRNAs (miR-455-3p, miR-206-3p, miR-132-3p, miR-16-5p, miR-124-3p, and miR-145-3p) and their interaction with differentially expressed genes (DEGs) in the neurobiology of spaceflight-induced depressive behavior. Using a simulated space environmental model (SCSE) for 21 days, depressive behavior was induced in rats, and candidate miRNA expressions and DEGs in the cortex region were analyzed through qRT-PCR and HPLC, respectively. Results showed that SCSE-exposed rats exhibited depressive behaviors, including anhedonia, increased immobility, and anxiousness compared to controls. Further analysis revealed increased hydrogen peroxide levels and decreased superoxide dismutase levels in the SCSE group, indicating abnormal oxidative stress in the cerebral cortex. Moreover, miRNA analysis demonstrated significant upregulation of miR-455-3p, miR-206-3p, miR-132-3p, and miR-16-5p expression. Among the DEGs identified, the in silico analysis highlighted their involvement in crucial pathways such as glutamatergic signaling, GABA synaptic pathway, and calcium signaling, implicating their role in spaceflight-induced depression. Protein-protein interaction analysis identified hub genes, including DLG4, DLG3, GRIN1, GRIN2B, GRIN2A, SYNGAP1, DLGAP1, GRIK2, and GRIN3A, impacting neuronal dysfunction functions in the cortex region of SCSE depressive rats. DLG4 emerged as a core gene regulated by miR-455-3p and miR-206-3p. Overall, this study underscores the potential of miRNAs as biomarkers for mood disorders and neurological abnormalities associated with spaceflight, advancing health sciences, and space health care.
Assuntos
Depressão , MicroRNAs , Voo Espacial , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos , Masculino , Depressão/metabolismo , Depressão/etiologia , Depressão/genética , Ratos Sprague-Dawley , Modelos Animais de DoençasRESUMO
Studies have shown that spaceflight affects the emotional and social performance of astronauts. Identifying the neural mechanisms underlying the emotional and social effects of spacefaring-specific environments is essential to specify targeted treatment and prevention interventions. Repetitive transcranial magnetic stimulation (rTMS) has been shown to improve the neuronal excitability and is used to treat psychiatric disorders such as depression. To study the changes of excitatory neuron activity in medial prefrontal cortex (mPFC) in simulated space complex environment (SSCE), and to explore the role of rTMS in behavioral disorders caused by SSCE and the neural mechanism. We found that rTMS effectively ameliorated the emotional and social impairments of mice in SSCE, and acute rTMS could instantaneously enhance the excitability of mPFC neurons. During depression-like and social novelty behaviors, chronic rTMS enhanced the mPFC excitatory neuronal activity that was inhibited by SSCE. Above results suggested that rTMS can completely reverse the SSCE-induced mood and social impairment by enhancing the suppressed mPFC excitatory neuronal activity. It was further found that rTMS suppressed the SSCE-induced excessive dopamine D2 receptor expression, which may be the cellular mechanism by which rTMS potentiates the SSCE-evoked hypoactive mPFC excitatory neurons. Our current results raise the possibility of rTMS being applied as a novel neuromodulation for mental health protection in spaceflight.
Assuntos
Transtornos Mentais , Estimulação Magnética Transcraniana , Animais , Camundongos , Estimulação Magnética Transcraniana/métodos , Emoções , Córtex Pré-Frontal/fisiologia , NeurôniosRESUMO
Depression in astronauts is one of the consequences of space flight effects, negatively impacting their work performances. Unfortunately, the underlying molecular mechanisms in space flight-induced depression are still unknown; however, various neuropsychiatric disorders reported that overexpressed NR2B-PSD-95-nNOS complex in the brain triggers various pathological pathways, and inhibiting NR2B-PSD-95-nNOS complex asserts antidepressant effects. Through our in silico analysis, we found that epigenetic regulator miR-445-3p targets PSD-95 and is hypothesized to down-regulate NR2B-PSD-95-nNOS complex to prevent neuronal damage associated with depression. Therefore, the present study is aimed to determine the novel insight of the miR-455-3p against the NR2B-PSD-95-nNOS complex in the neurobiology of space flight-induced depressive behavior. Using a simulated space environment complex model (SCSE) for 21 days, we induced depressive behavior in rats to analyze miR-455-3p expression and NR2B-PSD-95-nNOS complex in the cortex and hippocampus of the SCSE depressed rats through qRT-PCR and western blot analysis. Further, an in vitro microgravity model using rat hippocampus cell lines (RHNC) was utilized to identify the independent role of miR-455-3p on (1) NR2B-PSD-95-nNOS complex and TrKB-BDNF proteins, (2) oxidative stress, (3) nitric oxide level, (4) inflammatory cytokines, (5) mitochondrial biogenesis/ dynamics, and (6) cell survival. Our results showed that miR-455-3p regulates NR2B-PSD-95-nNOS complex in the SCSE depressed rats in opposite ways, with the cortex revealing a higher level of miR-455-3p and low-level NR2B-PSD-95-nNOS complex and the hippocampus showing down-regulated miR-455-3p and up-regulated NR2B-PSD-95-nNOS complex, indicating a region-specific change in the miR-455-3p and NR2B-PSD-95-nNOS complex in the SCSE depressed rats. Further RHNC results also confirmed down-regulated miR-455-3p and up-regulated NR2B-PSD-95-nNOS complex expression, similar to the findings in the hippocampus of SCSE rats, suggesting that microgravity influences miR-455-3p and associated changes. Additional investigations revealed that miR-455-3p targets PSD-95 and co-regulates NR2B-PSD-95-nNOS complex along with TrkB-BDNF signaling and exert protective effects against NR2B-PSD-95-nNOS complex, oxidative stress, nitric oxide, inflammatory cytokines, and mitochondrial defects, suggesting a valuable biomarker for devising depressive disorders.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , MicroRNAs , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Óxido Nítrico/metabolismo , Hipocampo/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
Studies have indicated that medium- to long-duration spaceflight may adversely affect astronauts' emotional and social functioning. Emotion modulation can significantly impact astronauts' well-being, performance, mission safety and success. However, with the increase in flight time, the potential alterations in emotional and social performance during spaceflight and their underlying mechanisms remain to be investigated, and targeted therapeutic and preventive interventions have yet to be identified. We evaluated the changes of emotional and social functions in mice with the extension of the time in simulated space complex environment (SSCE), and simultaneously monitored changes in brain tissue of vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), and inflammation-related factors. Furthermore, we assessed the regulatory role of repetitive transcranial magnetic stimulation (rTMS) in mood and socialization with the extension of the time in SSCE, as well as examining alterations of VEGF signaling in the medial prefrontal cortex (mPFC). Our findings revealed that mice exposed to SSCE for 7 days exhibited depressive-like behaviors, with these changes persisting throughout SSCE period. In addition, 14 days of rTMS treatment significantly ameliorated SSCE-induced emotional and social dysfunction, potentially through modulation of the level of VEGF signaling in mPFC. These results indicates that emotional and social disorders increase with the extension of SSCE time, and rTMS can improve the performance, which may be related to VEGF signaling. This study offers insights into potential pattern of change over time for mental health issues in astronauts. Further analysis revealed that rTMS modulates emotional and social dysfunction during SSCE exposure, with its mechanism potentially being associated with VEGF signaling.