Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(30): e2300049, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058139

RESUMO

Tuning the coordination environment and geometric structures of single atom catalysts is an effective approach for regulating the reaction mechanism and maximize the catalytic efficiency of single-atom centers. Here, a template-based synthesis strategy is proposed for the synthesis of high-density NiNx sites anchored on the surface of hierarchically porous nitrogen-doped carbon nanofibers (Ni-HPNCFs) with different coordination environments. First-principles calculations and advanced characterization techniques demonstrate that the single Ni atom is strongly coordinated with both pyrrolic and pyridinic N dopants, and that the predominant sites are stabilized by NiN3 sites. This dual engineering strategy increases the number of active sites and utilization efficiency of each single atom as well as boosts the intrinsic activity of each active site on a single-atom scale. Notably, the Ni-HPNCF catalyst achieves a high CO Faradaic efficiency (FECO ) of 97% at a potential of -0.7 V, a high CO partial current density (jCO ) of 49.6 mA cm-2 (-1.0 V), and a remarkable turnover frequency of 24 900 h-1 (-1.0 V) for CO2 reduction reactions (CO2 RR). Density functional theory calculations show that compared to pyridinic-type NiNx , the pyrrolic-type NiN3 moieties display a superior CO2 RR activity over hydrogen evolution reactions, resulting in their superior catalytic activity and selectivity.

2.
Angew Chem Int Ed Engl ; 61(45): e202212542, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36093883

RESUMO

Trapping the active sites on the exterior surface of hollow supports can reduce mass transfer resistance and enhance atomic utilization. Herein, we report a facile chemical vapor deposition strategy to synthesize single-Ni atoms decorated hollow S/N-doped football-like carbon spheres (Ni SAs@S/N-FCS). Specifically, the CdS@3-aminophenol/formaldehyde is carbonized into S/N-FCS. The gas-migrated Ni species are anchored on the surface of S/N-FCS simultaneously, yielding Ni SAs@S/N-FCS. The obtained catalyst exhibits outstanding performance for alkaline oxygen evolution reaction (OER) with an overpotential of 249 mV at 10 mA cm-2 , a small Tafel slope of 56.5 mV dec-1 , and ultra-long stability up to 166 hours without obvious fading. Moreover, the potential-driven dynamic behaviors of Ni-N4 sites and the contribution of the S dopant at different locations in the matrix to the OER activity are revealed by the operando X-ray absorption spectroscopy and theoretical calculations, respectively.

3.
ACS Appl Mater Interfaces ; 15(1): 1376-1383, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36580572

RESUMO

Single-atom catalysts within M-N-C structures are efficient for electrochemical CO2 reduction. However, most of them are powdered and require a coating process to load on the electrode. Herein, we developed a facile approach to the synthesis of large-scale self-supported porous carbon nanofiber electrodes directly decorated with atomically dispersed nickel active sites using facile electrospinning, where poly(methyl methacrylate) was employed to tune well the distributions of pores located in carbon nanofibers. The above self-supported carbon nanofibers were applied as a gas diffusion electrode to achieve 94.3% CO Faraday efficiency and 170 mA cm-2 current density, which can be attributed to the effects of rich mesoporous structures favorable for adsorption and mass transfer of CO2 and single nickel catalysts effectively converting CO2 to CO. This work provides an efficient strategy to fabricate self-supported electrodes and may accelerate the progress toward industrial applications of single-atom catalysts in the field of CO2 electroreduction.

4.
Adv Mater ; 34(35): e2203442, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35797421

RESUMO

The development of efficient and cost-effective electrocatalysts toward the oxygen evolution reaction (OER) is highly desirable for clean energy and fuel conversion. Herein, the facile preparation of Ni single atoms embedded hollow S/N-doped carbon macroporous fibers (Ni SAs@S/N-CMF) as efficient catalysts for OER through pyrolysis of designed CdS-NiSx /polyacrylonitrile composite fibers is reported. Specifically, CdS provides the sulfur source for the doping of polyacrylonitrile-derived carbon matrix and simultaneously creates the hollow macroporous structure, while NiSx is first reduced to nanoparticles and finally evolves into single Ni atoms through the atom migration-trapping strategy. Benefiting from the abundantly exposed single Ni atoms and hollow macroporous structure, the resultant Ni SAs@S/N-CMF electrocatalysts deliver outstanding activity and stability for OER. Specifically, it needs an overpotential of 285 mV to achieve the benchmark current density of 10 mA cm-2 with a small Tafel slope of 50.8 mV dec-1 .

5.
Adv Mater ; 34(41): e2205303, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35986557

RESUMO

To rationally design single-atom metal-organic framework (MOF)-involving photocatalysts remains an ongoing challenge for efficient CO2 conversion. Here, cuppy microstructures, consisting of a Ti(IV)-oxo node and three linked carboxylic moieties, in the single-coordination-layer Ti2 (H2 dobdc)3 MOF (NTU-9) are exploited to immobilize abundant single Ni(II) sites (Ni@MOF). The coupling of Ni@MOF with BiVO4 (BVO) nanosheets by H-bonding-induced assembly process obtains wide-spectrum 2D heterojunctions. The optimal heterojunction exhibits competitive performance and enables around 66-fold CO2 conversion of that for BVO nanoparticles by pure water, with nearly 100% CO selectivity. The exceptional photoactivity is attributed to favorable S-scheme charge transfer from BVO to MOF then to single Ni(II) sites. Noteworthily, single Ni(II) sites anchored by the Ti(IV)-oxo node and vicinal carboxylic moieties serving as a unique local microenvironment (LME) are found to synergistically catalyze CO2 conversion. Specifically, the hydroxyl groups of carboxylic moieties can form H-bonds with CO2 to promote its adsorption on single Ni(II) sites, and also can provide accessible protons to facilitate H-assisted CO2 reduction. Moreover, the CO desorption and subsequent CO2 adsorption on single Ni(II) sites with LME is proved to be thermodynamically favored, and hence dominates the high CO selectivity. This work highlights the significance of modulating the LME of single atoms to rationally design photocatalysts for realizing carbon neutralization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA