Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Sensors (Basel) ; 24(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38676193

RESUMO

An external cavity wavelength-fiber ring laser (ECWTFL) based on a semiconductor optical amplifier and a combined wavelength scanning filter in the Littrow configuration is proposed and experimentally demonstrated. With the benefit of the combination of an external cavity wavelength filter and a Lyot filter, the laser achieves a single-mode narrow linewidth output with a linewidth of 1.75 kHz. The wavelength tuning range reaches 133 nm, covering the entire S + C band. The proposed ECWTFL is used for demodulation of a fiber EFPI sensor; the result shows that the proposed ECWTFL has the ability to demodulate the small cavity-length FPI sensor.

2.
Sensors (Basel) ; 24(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38794053

RESUMO

Dissolved gases in the aquatic environment are critical to understanding the population of aquatic organisms and the ocean. Currently, laser absorption techniques based on membrane separation technology have made great strides in dissolved gas detection. However, the prolonged water-gas separation time of permeable membranes remains a key obstacle to the efficiency of dissolved gas analysis. To mitigate these limitations, we demonstrated direct measurement of dissolved gas using the evanescent-wave absorption spectroscopy of a tapered silica micro-fiber. It enhanced the analysis efficiency of dissolved gases without water-gas separation or sample preparation. The feasibility of this sensor for direct measurement of dissolved gases was verified by taking the detection of dissolved ammonia as an example. With a sensing length of 5 mm and a consumption of ~50 µL, this sensor achieves a system response time of ~11 min and a minimum detection limit (MDL) of 0.015%. Possible strategies are discussed for further performance improvement in in-situ applications requiring fast and highly sensitive dissolved gas sensing.

3.
Nano Lett ; 23(17): 7797-7804, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37590122

RESUMO

Symmetry plays an essential role in the fundamental properties of a physical system. In this work, we report on the realization of tunable single-mode polariton lasing from highly excited Rydberg states via symmetry engineering. By breaking the symmetry of the polaritonic wave function through potential wells and controlling the spatial overlap between the gain region and the eigen mode, we are able to generate single-mode polariton lasing, reversibly and dynamically, from quantized polariton states. Increasing the asymmetry of the potential well, single-mode lasing can be achieved even for the highly excited Rydberg state with a principle quantum number of N = 14. Moreover, as a result of the excellent reservoir-eigen mode overlap and efficient spatial confinement, the threshold of lasing can be reduced up to 6 orders of magnitude, compared with those conventional pumping schemes. Our results present a new strategy toward the realization of thresholdless polariton lasing with dynamical tunability.

4.
Nano Lett ; 23(18): 8553-8559, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37681677

RESUMO

Weighing particles above the megadalton mass range has been a persistent challenge in commercial mass spectrometry. Recently, nanoelectromechanical systems-based mass spectrometry (NEMS-MS) has shown remarkable performance in this mass range, especially with the advance of performing mass spectrometry under entirely atmospheric conditions. This advance reduces the overall complexity and cost while increasing the limit of detection. However, this technique required the tracking of two mechanical modes and the accurate knowledge of mode shapes that may deviate from their ideal values, especially due to air damping. Here, we used a NEMS architecture with a central platform, which enables the calculation of mass by single-mode measurements. Experiments were conducted using polystyrene and gold nanoparticles to demonstrate the successful acquisition of mass spectra using a single mode with an improved areal capture efficiency. This advance represents a step forward in NEMS-MS, bringing it closer to becoming a practical application for the mass sensing of nanoparticles.

5.
Nanotechnology ; 34(44)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37473744

RESUMO

In this work, we demonstrate optically pumped lasing in highly Zn-doped GaAs nanowires (NWs) lying on an iron film. The conically shaped NWs are first covered with an 8 nm thick Al2O3film to prevent atmospheric oxidation and mitigate band-bending effects. Multimode and single-mode lasing have been observed for NWs with a length greater or smaller than 2µm, respectively. Finite difference time domain calculations reveal a weak electric field enhancement in the Al2O3layer at the NW/iron film interface for the lasing modes. The high Zn acceptor concentration in the NWs provides enhanced radiative efficiency and enables lasing on the iron film despite plasmonic losses. Our results open avenues for integrating NW lasers on ferromagnetic substrates to achieve new functionalities, such as magnetic field-induced modulation.

6.
Plant Dis ; 107(8): 2395-2406, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36691269

RESUMO

Fungicide use is integral to reduce yield loss from Sclerotinia sclerotiorum on dry bean and soybean. Increasing fungicide use against this fungus may lead to resistance to the most common fungicides. Resistance has been reported in Brazil (Glycine max) and China (Brassica napus subsp. napus), however, few studies have investigated fungicide sensitivity of S. sclerotiorum in the United States. This work was conducted to determine if there was a difference in fungicide sensitivity of S. sclerotiorum isolates in the United States from: (i) dry bean versus soybean and (ii) fields with different frequencies of fungicide application. We further hypothesized that isolates with fungicide applications of a single active ingredient from tropical Brazil and subtropical Mexico were less sensitive than temperate U.S. isolates due to different management practices and climates. The EC50(D) fungicide sensitivity of 512 S. sclerotiorum isolates from the United States (443), Brazil (36), and Mexico (33) was determined using a discriminatory concentration (DC) previously identified for tetraconazole (2.0 ppm; EC50(D) range of 0.197 to 2.27 ppm), boscalid (0.2; 0.042 to 0.222), picoxystrobin (0.01; 0.006 to 0.027), and thiophanate-methyl, which had a qualitative DC of 10 ppm. Among the 10 least sensitive isolates to boscalid and picoxystrobin, 2 presented mutations known to confer resistance in the SdhB (qualitative) and SdhC (quantitative) genes; however, no strong resistance was found. This study established novel DCs that can be used for further resistance monitoring and baseline sensitivity of S. sclerotiorum to tetraconazole worldwide plus baseline sensitivity to boscalid in the United States.


Assuntos
Ascomicetos , Fungicidas Industriais , Estados Unidos , Fungicidas Industriais/farmacologia , Glycine max , Ascomicetos/genética
7.
Sensors (Basel) ; 23(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896612

RESUMO

An optical fiber sensor for the simultaneous measurement of microdisplacement and temperature based on balloon-shaped single-mode fibers cascaded with a fiber Bragg grating with two core-offset joints is proposed. The interference between the core mode and cladding mode is caused by the stimulation of the cladding mode by the core-offset joints' structure. The cladding of the core has a distinct refractive index, which causes optical path differences and interference. The balloon-shaped structure realizes mode selection by bending. As the displacement increases, the radius of the balloon-shaped interferometer changes, resulting in a change in the interference fringes of the interferometer, while the Bragg wavelength of the fiber grating remains unchanged. Temperature changes will cause the interference fringes of the interferometer and the Bragg wavelength of the fiber grating to shift. The proposed optical fiber sensor allows for the simultaneous measurement of microdisplacement and temperature. The results of the experiment indicate that the sensitivity of the interferometer to microdisplacement is 0.306 nm/µm in the sensing range of 0 to 200 µm and that the temperature sensitivity is 0.165 nm/°C, respectively. The proposed curvature sensor has the advantages of a compact structure, extensive spectrum of dynamic measurement, high sensitivity, and simple preparation, and has a wide range of potential applications in the fields of structural safety monitoring, aviation industry, and resource exploration.

8.
Sensors (Basel) ; 23(13)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37447941

RESUMO

The paper presents theoretical analyses and experimental investigations of broadband differential interference in planar gradient waveguides made via K+-Na+ ion exchange in BK-7 glass. This technology, due to its large polarimetric dispersion, is especially useful for applications in differential interferometry. We discuss the influence of technological parameters on the operation characteristics of the structure in terms of sensor applications. The refractive index variation in the measured external surroundings affects the modal properties of TE and TM modes and the spectral distribution at the output of the differential interferometer. The optical system described in this work has been designed specifically for use in biological systems where variations in the index of refraction need to be measured.


Assuntos
Dispositivos Ópticos , Refratometria , Troca Iônica , Análise Espectral , Interferometria
9.
Sensors (Basel) ; 23(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37420749

RESUMO

The safety of railway transportation is crucial to social and economic development. Therefore, real-time monitoring of the rail is particularly necessary. The current track circuit structure is complex and costly, posing challenges to monitoring broken tracks using alternative methods. As a non-contact detection technology with a lower environmental impact, electromagnetic ultrasonic transducers (EMATs) have become a concern. However, traditional EMATs have problems such as low conversion efficiency and complex modes, which can limit their effectiveness for long-distance monitoring. Therefore, this study introduces a novel dual-magnet phase-stacked EMAT (DMPS-EMAT) design comprising two magnets and a dual-layer winding coil arrangement. The magnets are positioned at a distance equal to the wavelength of the A0 wave from each other, while the center distance between the two sets of coils beneath the transducer is also equal to the wavelength. After analyzing the dispersion curves of the rail waist, it was determined that the optimal frequency for long-distance rail monitoring is 35 kHz. At this frequency, adjusting the relative positions of the two magnets and the coil directly underneath to be one A0 wavelength can effectively excite a constructive interference A0 wave in the rail waist. The simulation and experimental results show that DMPS-EMAT excited a single-mode A0 wave, resulting in a 1.35-times increase in amplitude.


Assuntos
Imãs , Tecnologia , Simulação por Computador , Transdutores , Meios de Transporte
10.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37177524

RESUMO

Taking non-contact temperature measurements in narrow areas or confined spaces of non-uniform surfaces requires high spatial resolution and independence of emissivity uncertainties that conventional cameras can hardly provide. Two-color optical fiber (OF) pyrometers based on standard single-mode (SMF) and multi-mode optical fibers (MMF) with a small core diameter and low numerical aperture in combination with associated commercially available components can provide a spatial resolution in the micrometer range, independent of the material's emissivity. Our experiment involved using a patterned microheater to generate temperatures of approximately 340 °C on objects with a diameter of 0.25 mm. We measured these temperatures using two-color optical fiber pyrometers at a 1 kHz sampling rate, which were linearized in the range of 250 to 500 °C. We compared the results with those obtained using an industrial infrared camera. The tests show the potential of our technique for quickly measuring temperature gradients in small areas, independent of emissivity, such as in microthermography. We also report simulations and experiments, showing that the optical power gathered via each channel of the SMF and MMF pyrometers from hot objects of 250 µm is independent of distance until the OF light spot becomes larger than the diameter of the object at 0.9 mm and 0.4 mm, respectively.

11.
Sensors (Basel) ; 22(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35214352

RESUMO

A nondestructive measurement method based on an Optical frequency domain reflectometry (OFDR) was demonstrated to achieve Young's modulus of an optical fiber. Such a method can be used to measure, not only the averaged Young's modulus within the measured fiber length, but also Young's modulus distribution along the optical fiber axis. Moreover, the standard deviation of the measured Young's modulus is calculated to analyze the measurement error. Young's modulus distribution of the coated and uncoated single mode fiber (SMF) samples was successfully measured along the optical fiber axis. The average Young's modulus of the coated and uncoated SMF samples was 13.75 ± 0.14, and 71.63 ± 0.43 Gpa, respectively, within the measured fiber length of 500 mm. The measured Young's modulus distribution along the optical fiber axis could be used to analyze the damage degree of the fiber, which is very useful to nondestructively estimate the service life of optical fiber sensors immersed into smart engineer structures.

12.
Sensors (Basel) ; 22(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35162031

RESUMO

A fiber-coupled, compact, remotely operated laser absorption instrument is developed for CO, CO2, and H2O measurements in reactive flows at the elevated temperatures and pressures expected in gas turbine combustor test rigs with target pressures from 1-25 bar and temperatures of up to 2000 K. The optical engineering for solutions of the significant challenges from the ambient acoustic noise (~120 dB) and ambient test rig temperatures (60 °C) are discussed in detail. The sensor delivers wavelength-multiplexed light in a single optical fiber from a set of solid-state lasers ranging from diodes in the near-infrared (~1300 nm) to quantum cascade lasers in the mid-infrared (~4900 nm). Wavelength-multiplexing systems using a single optical fiber have not previously spanned such a wide range of laser wavelengths. Gas temperature is inferred from the ratio of two water vapor transitions. Here, the design of the sensor, the optical engineering required for simultaneous fiber delivery of a wide range of laser wavelengths on a single optical line-of-sight, the engineering required for sensor survival in the harsh ambient environment, and laboratory testing of sensor performance in the exhaust gas of a flat flame burner are presented.

13.
Entropy (Basel) ; 24(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892993

RESUMO

According to the single-mode approximation applied to two different mo des, each associated with different uniformly accelerating reference frames, we present analytical expression of the Minkowski states for both the ground and first excited states. Applying such an approximation, we study the entanglement property of Bell and Greenberger-Horne-Zeilinger (GHZ) states formed by such states. The corresponding entanglement properties are described by studying negativity and von Neumann entropy. The degree of entanglement will be degraded when the acceleration parameters increase. We find that the greater the number of particles in the entangled system, the more stable the system that is studied by the von Neumann entropy. The present results will be reduced to those in the case of the uniformly accelerating reference frame.

14.
Nanotechnology ; 33(11)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34879353

RESUMO

Perovskite nanocrystals (NCs) have emerged as attractive gain materials for solution-processed microlasers. Despite the recent surge of reports in this field, it is still challenging to develop low-cost perovskite NC-based microlasers with high performance. Herein, we demonstrate low-threshold, spectrally tunable lasing from ensembles of CsPbBr3NCs deposited on silica microspheres. Multiple whispering-gallery-mode lasing is achieved from individual NC/microspheres with a low threshold of ∼3.1µJ cm-2and cavity quality factor of ∼1193. Through time-resolved photoluminescence measurements, electron-hole plasma recombination is elucidated as the lasing mechanism. By tuning the microsphere diameter, the desirable single-mode lasing is successfully achieved. Remarkably, the CsPbBr3NCs display durable room-temperature lasing under ∼107shots of pulsed laser excitation, substantially exceeding the stability of conventional colloidal NCs. These CsPbBr3NC-based microlasers can be potentially useful in photonic applications.

15.
Sensors (Basel) ; 21(9)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33922980

RESUMO

This paper proposes an original model of a polarimetric current sensor, in which the measuring coil was made of a single mode telecommunication optical fiber ITU-T G.652, G.653, G.655, and G.657. This sensor was subjected to the commercialization process, which was carried out by a company combining the functionality of a technology transfer center with the capabilities of the Startit Fund Sp. z o.o. The published results included the analysis of the implementation readiness, the analysis of the market potential, the valuation of the industrial property rights of the invention and indicated further directions of scientific research on the sensor, which include the frequency analysis of measurement signals. This prompted the conduct of relevant scientific research. In this paper, the idea of measurement of current using polarimetric current sensor with optical fiber coil has been briefly characterized. It shows the definition and basic properties of the Discrete Fourier Transform (DFT). It discusses the technique of determining the value of each harmonic of signal at the input and output of polarimetric current sensor. The value of measurement errors and total harmonic distortion (THD) have been calculated. The general conclusions for disturbances in the processing realized in polarimetric current sensor have been formulated. In addition, the impact of the molar concentration of the dopant GeO2 in the core of the single mode telecommunication optical fibers and the impact of the number of turns of the measuring coil on the distortion accompanying the process of processing have been determined. Therefore, it can be concluded that the key result obtained during the research is the confirmation of the fact that single mode telecommunication optical fibers can be used to build the measuring coil of a polarimetric sensor used for measuring alternating currents. This means that the considered sensor, when measuring this type of currents, does not introduce additional distortions and distortions of their waveforms.

16.
Angew Chem Int Ed Engl ; 60(12): 6362-6366, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33315282

RESUMO

Metal-organic frameworks (MOFs) have recently emerged as appealing platforms to construct microlasers owing to their compelling characters combining the excellent stability of inorganic materials and processable characters of organic materials. However, MOF microstructures developed thus far are generally composed of multiple edge boundaries due to their crystalline nature, which consequently raises significant scattering losses that are detrimental to lasing performance. In this work, we propose a strategy to overcome the above drawback by designing spherically shaped MOFs microcavities. Such spherical MOF microstructures are constructed by amorphizing MOFs with a topological distortion network through introducing flexible building blocks into the growth environment. With an ultra-smooth surface and excellent circular boundaries, the acquired spherical microcavities possess a Q factor as high as ≈104 and can provide sufficient feedback for high-quality single-mode lasing oscillations. We hope that these results will pave an avenue for the construction of new types of flexible MOF-based photonic components.

17.
Sensors (Basel) ; 20(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32024014

RESUMO

The exploration of novel polymers for temperature sensing with high sensitivity has attracted tremendous research interest. Hence, we report a polystyrene-coated optical fiber temperature sensor with high sensitivity. To enhance the temperature sensitivity, flat, thin, smooth, and air bubble-free polystyrene was coated on the edge surface of a single-mode optical fiber, where the coating thickness was varied based on the solution concentration. Three thicknesses of the polystyrene layer were obtained as 2.0, 4.1, and 8.0 µm. The temperature sensor with 2.0 µm thick polystyrene exhibited the highest temperature sensitivity of 439.89 pm °C-1 in the temperature range of 25-100 °C. This could be attributed to the very uniform and thin coating of polystyrene, along with the reasonable coefficient of thermal expansion and thermo-optic coefficient of polystyrene. Overall, the experimental results proved the effectiveness of the proposed polystyrene-coated temperature sensor for accurate temperature measurement.

18.
Chem Rec ; 19(1): 15-39, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29905399

RESUMO

This Personal Account describes the author's involvement in the field of microwave-assisted organic synthesis (MAOS) from the late 1990's starting out with kitchen microwave ovens right through to the development of a reactor in 2016 that - although not using microwave technology - in many ways mimics the performance of a modern laboratory microwave. The reader is taken along a journey that has spanned two decades of intense research on various aspects of microwave chemistry, and, at the same time, was intimately linked to key innovations regarding equipment design and development. A "behind the scenes" approach is taken in this article to share - from a very personal point of view - how specific projects and research ideas were conceived and developed in my research group, and how in general the field of microwave chemistry has progressed in the last two decades.

19.
Mikrochim Acta ; 187(1): 72, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31858252

RESUMO

A tapered single-mode coreless single-mode (SCS) structure with high sensitivity for sensing refractive index is described. In order to achieve high specificity of optical biosensors, here enzyme capsulation film was achieved by embedding urease in zeolitic imidazolate framework (ZIF-8/urease) through in situ growth approach on the coreless fibers. Determination of urea is achieved through online monitoring of its binding to the urease in zeolitic imidazolate framework. Refractive index change result in wavelength shifts of the optical fiber biosensor. The resonance wavelength exhibits a good linear relationship with urea concentration in the range of 1 to 10 mM with detection limit of 0.1 mM and sensitivity of 0.8 mM/RIU (refractive index unit) if operated with broadband light ranging from 1525 nm to 1590 nm. Final assessment of optical biosensor in real sample was performed where excellent performance in terms of sensitivity and selectivity was observed. Schematic representation of experimental setup and mechanism for urea detection. A tapered single-mode coreless single-mode (SCS) structure is placed between a broadband light source ranging (BBS) and optical spectrum analyzer (OSA). ZIF-8/urease composites are applied as a recognition layer for urea detection.


Assuntos
Técnicas Biossensoriais , Enzimas Imobilizadas/química , Estruturas Metalorgânicas/química , Ureia/análise , Urease/química , Zeolitas/química , Enzimas Imobilizadas/metabolismo , Estruturas Metalorgânicas/metabolismo , Fibras Ópticas , Tamanho da Partícula , Propriedades de Superfície , Ureia/metabolismo , Urease/metabolismo , Zeolitas/metabolismo
20.
Sensors (Basel) ; 19(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683547

RESUMO

With the rapid advancement of Yb-doped fiber lasers (YDFL) whose output wavelength is near 1060 nm, passive fibers to carry the high optical power at the spectral range are also gaining significant importance. Stimulated Brillouin scattering (SBS) in the passive fibers connecting components in the lasers, especially, can set a fundamental limit in the power handling of YDFL systems. We experimentally analyzed SBS characteristics of passive single mode fibers (SMF) at a wavelength of 1060 nm. For two types of SMFs (Corning HI1060 and HI1060Flex), the Brillouin frequency (νΒ), its linewidth (ΔνΒ), and their variations with respect to the input laser power and the surrounding temperature were experimentally measured, along with the SBS threshold power (Pth). The optical heterodyne detection method was used to identify temperature-dependent SBS characteristics of fibers, and we found SMFs at λ = 1060 nm showed a temperature sensitivity in SBS frequency shift more than 40% higher than in conventional SMFs operating in C-band. Detailed procedures to measure the SBS properties are explained, and a new potential of 1060 nm SMF as a distributed temperature sensor is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA