Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Mol Cell ; 82(24): 4647-4663.e8, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36525955

RESUMO

To explore genome organization and function in the HIV-infected brain, we applied single-nuclei transcriptomics, cell-type-specific chromosomal conformation mapping, and viral integration site sequencing (IS-seq) to frontal cortex from individuals with encephalitis (HIVE) and without (HIV+). Derepressive changes in 3D genomic compartment structures in HIVE microglia were linked to the transcriptional activation of interferon (IFN) signaling and cell migratory pathways, while transcriptional downregulation and repressive compartmentalization of neuronal health and signaling genes occurred in both HIVE and HIV+ microglia. IS-seq recovered 1,221 brain integration sites showing distinct genomic patterns compared with peripheral lymphocytes, with enrichment for sequences newly mobilized into a permissive chromatin environment after infection. Viral transcription occurred in a subset of highly activated microglia comprising 0.33% of all nuclei in HIVE brain. Our findings point to disrupted microglia-neuronal interactions in HIV and link retroviral integration to remodeling of the microglial 3D genome during infection.


Assuntos
Infecções por HIV , Microglia , Humanos , Microglia/metabolismo , Encéfalo , Ativação de Macrófagos , Macrófagos , Infecções por HIV/genética
2.
Hum Mol Genet ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776957

RESUMO

Huntington's disease (HD) is a neurodegenerative genetic disorder caused by an expansion in the CAG repeat tract of the huntingtin (HTT) gene resulting in behavioural, cognitive, and motor defects. Current knowledge of disease pathogenesis remains incomplete, and no disease course-modifying interventions are in clinical use. We have previously reported the development and characterisation of the OVT73 transgenic sheep model of HD. The 73 polyglutamine repeat is somatically stable and therefore likely captures a prodromal phase of the disease with an absence of motor symptomatology even at 5-years of age and no detectable striatal cell loss. To better understand the disease-initiating events we have undertaken a single nuclei transcriptome study of the striatum of an extensively studied cohort of 5-year-old OVT73 HD sheep and age matched wild-type controls. We have identified transcriptional upregulation of genes encoding N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors in medium spiny neurons, the cell type preferentially lost early in HD. Further, we observed an upregulation of astrocytic glutamate uptake transporters and medium spiny neuron GABAA receptors, which may maintain glutamate homeostasis. Taken together, these observations support the glutamate excitotoxicity hypothesis as an early neurodegeneration cascade-initiating process but the threshold of toxicity may be regulated by several protective mechanisms. Addressing this biochemical defect early may prevent neuronal loss and avoid the more complex secondary consequences precipitated by cell death.

3.
Proc Natl Acad Sci U S A ; 120(12): e2221526120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36913592

RESUMO

Ruminants have a semi-invasive placenta, which possess highly vascularized placentomes formed by maternal endometrial caruncles and fetal placental cotyledons and required for fetal development to term. The synepitheliochorial placenta of cattle contains at least two trophoblast cell populations, including uninucleate (UNC) and binucleate (BNC) cells that are most abundant in the cotyledonary chorion of the placentomes. The interplacentomal placenta is more epitheliochorial in nature with the chorion developing specialized areolae over the openings of uterine glands. Of note, the cell types in the placenta and cellular and molecular mechanisms governing trophoblast differentiation and function are little understood in ruminants. To fill this knowledge gap, the cotyledonary and intercotyledonary areas of the mature day 195 bovine placenta were analyzed by single nuclei analysis. Single-nuclei RNA-seq analysis found substantial differences in cell type composition and transcriptional profiles between the two distinct regions of the placenta. Based on clustering and cell marker gene expression, five different trophoblast cell types were identified in the chorion, including proliferating and differentiating UNC and two different types of BNC in the cotyledon. Cell trajectory analyses provided a framework for understanding the differentiation of trophoblast UNC into BNC. The upstream transcription factor binding analysis of differentially expressed genes identified a candidate set of regulator factors and genes regulating trophoblast differentiation. This foundational information is useful to discover essential biological pathways underpinning the development and function of the bovine placenta.


Assuntos
Placenta , Trofoblastos , Gravidez , Bovinos , Animais , Feminino , Trofoblastos/metabolismo , Placenta/metabolismo , RNA Nuclear Pequeno/metabolismo , Ruminantes , Análise de Sequência de RNA
4.
FASEB J ; 38(1): e23349, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38069914

RESUMO

In this study, the transcriptional repressor REST (Repressor Element 1 Silencing Transcription factor) was ablated in the mouse placenta to investigate molecular and cellular impacts on the offspring brain at different life stages. Ablation of placental REST deregulated several brain metabolites, including glucose and lactate that fuel brain energy, vitamin C (ascorbic acid) that functions in the epigenetic programming of the brain during postnatal development, and glutamate and creatine that help the brain to respond to stress conditions during adult life. Bulk RNA-seq analysis showed that a lack of placental REST persistently altered multiple transport genes, including those related to oxygen transportation in the offspring brain. While metabolic genes were impacted in the postnatal brain, different stress response genes were activated in the adult brain. DNA methylation was also impacted in the adult brain due to the loss of placental REST, but in a sex-biased manner. Single-nuclei RNA-seq analysis showed that specific cell types of the brain, particularly those of the choroid plexus and ependyma, which play critical roles in producing cerebrospinal fluid and maintaining metabolic homeostasis, were significantly impacted due to the loss of placental REST. These cells showed significant differential expression of genes associated with the metabotropic (G coupled protein) and ionotropic (ligand-gated ion channel) glutamate receptors, suggesting an impact of ablation of placental REST on the glutamatergic signaling of the offspring brain. The study expands our understanding of placental influences on the offspring brain.


Assuntos
Metilação de DNA , Placenta , Proteínas Repressoras , Animais , Feminino , Camundongos , Gravidez , Encéfalo , Feto/metabolismo , Expressão Gênica , Placenta/metabolismo , Proteínas Repressoras/genética
5.
Proc Natl Acad Sci U S A ; 119(46): e2203491119, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36350923

RESUMO

Most genetic studies consider autism spectrum disorder (ASD) and developmental disorder (DD) separately despite overwhelming comorbidity and shared genetic etiology. Here, we analyzed de novo variants (DNVs) from 15,560 ASD (6,557 from SPARK) and 31,052 DD trios independently and also combined as broader neurodevelopmental disorders (NDDs) using three models. We identify 615 NDD candidate genes (false discovery rate [FDR] < 0.05) supported by ≥1 models, including 138 reaching Bonferroni exome-wide significance (P < 3.64e-7) in all models. The genes group into five functional networks associating with different brain developmental lineages based on single-cell nuclei transcriptomic data. We find no evidence for ASD-specific genes in contrast to 18 genes significantly enriched for DD. There are 53 genes that show mutational bias, including enrichments for missense (n = 41) or truncating (n = 12) DNVs. We also find 10 genes with evidence of male- or female-bias enrichment, including 4 X chromosome genes with significant female burden (DDX3X, MECP2, WDR45, and HDAC8). This large-scale integrative analysis identifies candidates and functional subsets of NDD genes.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Criança , Masculino , Feminino , Humanos , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Exoma , Histona Desacetilases/genética , Proteínas Repressoras/genética , Proteínas de Transporte/genética
6.
BMC Genomics ; 25(1): 633, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918688

RESUMO

Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder featured by abnormal movements, arising from the extensive neuronal loss and glial dysfunction in the striatum. Although the causes and pathogenetic mechanisms of HD are well established, the development of disease-modifying pharmacological therapies for HD remains a formidable challenge. Laduviglusib has demonstrated neuroprotective effects through the enhancement of mitochondrial function in the striatum of HD animal models. Ferroptosis is a nonapoptotic form of cell death that occurs as a consequence of lethal iron-dependent lipid peroxidation and mitochondrial dysfunction. However, the ferroptosis-related mechanisms underlying the neuroprotective effects of laduviglusib in the striatum of HD patients remain largely uncharted. In this study, we leveraged single-nucleus RNA sequencing data obtained from the striatum of HD patients in stages 2-4 to identify differentially expressed genes within distinct cell-type. We subsequently integrated these differentially expressed genes of HD, laduviglusib target genes and ferroptosis-related genes to predict the ferroptosis-related mechanisms underpinning the neuroprotective effects of laduviglusib in HD patients. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses unveiled that the effects of laduviglusib on direct pathway striatal projection neurons (dSPNs) is mainly associated with Th17 cell differentiation pathways. Conversely, its impact on indirect pathway striatal projection neurons (iSPNs) extends to the Neurotrophin signaling pathway, FoxO signaling pathway, and reactive oxygen species pathway. In microglia, laduviglusib appears to contribute to HD pathology via mechanisms related to Th17 cell differentiation and the FoxO signaling pathway. Further, molecular docking results indicated favorable binding of laduviglusib with PARP1 (associated with dSPNs and iSPNs), SCD (associated with astrocytes), ALOX5 (associated with microglia), and HIF1A (associated with dSPNs, iSPNs, and microglia). In addition, the KEGG results suggest that laduviglusib may enhance mitochondrial function and protect against neuronal loss by targeting ferroptosis-related signaling pathways, particularly mediated by ALOX5 in microglia. These findings provide valuable insights into the potential mechanisms through which laduviglusib exerts its effects on distinct cell-types within the HD striatum.


Assuntos
Corpo Estriado , Ferroptose , Doença de Huntington , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Doença de Huntington/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Humanos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
7.
Cell Mol Life Sci ; 80(5): 131, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095391

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a complex and incurable neurodegenerative disorder in which genetic and epigenetic factors contribute to the pathogenesis of all forms of ALS. The interplay of genetic predisposition and environmental footprints generates epigenetic signatures in the cells of affected tissues, which then alter transcriptional programs. Epigenetic modifications that arise from genetic predisposition and systemic environmental footprints should in theory be detectable not only in affected CNS tissue but also in the periphery. Here, we identify an ALS-associated epigenetic signature ('epiChromALS') by chromatin accessibility analysis of blood cells of ALS patients. In contrast to the blood transcriptome signature, epiChromALS includes also genes that are not expressed in blood cells; it is enriched in CNS neuronal pathways and it is present in the ALS motor cortex. By combining simultaneous ATAC-seq and RNA-seq with single-cell sequencing in PBMCs and motor cortex from ALS patients, we demonstrate that epigenetic changes associated with the neurodegenerative disease can be found in the periphery, thus strongly suggesting a mechanistic link between the epigenetic regulation and disease pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Epigênese Genética , Cromatina , Predisposição Genética para Doença , Doenças Neurodegenerativas/genética , Células Sanguíneas/metabolismo , Células Sanguíneas/patologia
8.
Addict Biol ; 29(5): e13403, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38735880

RESUMO

Synthetic opioids such as fentanyl contribute to the vast majority of opioid-related overdose deaths, but fentanyl use remains broadly understudied. Like other substances with misuse potential, opioids cause lasting molecular adaptations to brain reward circuits, including neurons in the ventral tegmental area (VTA). The VTA contains numerous cell types that play diverse roles in opioid use and relapse; however, it is unknown how fentanyl experience alters the transcriptional landscape in specific subtypes. Here, we performed single nuclei RNA sequencing to study transcriptional programs in fentanyl-experienced mice. Male and female C57/BL6 mice self-administered intravenous fentanyl (1.5 µg/kg/infusion) or saline for 10 days. After 24 h abstinence, VTA nuclei were isolated and prepared for sequencing on the 10× platform. We identified different patterns of gene expression across cell types. In dopamine neurons, we found enrichment of genes involved in growth hormone signalling. In dopamine-glutamate-GABA combinatorial neurons, and some GABA neurons, we found enrichment of genes involved in Pi3k-Akt signalling. In glutamate neurons, we found enrichment of genes involved in cholinergic signalling. We identified transcriptional regulators for the differentially expressed genes in each neuron cluster, including downregulated transcriptional repressor Bcl6, and upregulated transcription factor Tcf4. We also compared the fentanyl-induced gene expression changes identified in mouse VTA with a published rat dataset in bulk VTA, and found overlap in genes related to GABAergic signalling and extracellular matrix interaction. Together, we provide a comprehensive picture of how fentanyl self-administration alters the transcriptional landscape of the mouse VTA that serves as the foundation for future mechanistic studies.


Assuntos
Analgésicos Opioides , Fentanila , Camundongos Endogâmicos C57BL , Área Tegmentar Ventral , Animais , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Camundongos , Fentanila/farmacologia , Masculino , Feminino , Analgésicos Opioides/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Autoadministração , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transtornos Relacionados ao Uso de Opioides/genética
9.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34663697

RESUMO

Trained immunity defines long-lasting adaptations of innate immunity based on transcriptional and epigenetic modifications of myeloid cells and their bone marrow progenitors [M. Divangahi et al., Nat. Immunol. 22, 2-6 (2021)]. Innate immune cells, however, do not exclusively differentiate between foreign and self but also react to host-derived molecules referred to as alarmins. Extracellular "labile" heme, released during infections, is a bona fide alarmin promoting myeloid cell activation [M. P. Soares, M. T. Bozza, Curr. Opin. Immunol. 38, 94-100 (2016)]. Here, we report that labile heme is a previously unrecognized inducer of trained immunity that confers long-term regulation of lineage specification of hematopoietic stem cells and progenitor cells. In contrast to previous reports on trained immunity, essentially mediated by pathogen-associated molecular patterns, heme training depends on spleen tyrosine kinase signal transduction pathway acting upstream of c-Jun N-terminal kinases. Heme training promotes resistance to sepsis, is associated with the expansion of self-renewing hematopoetic stem cells primed toward myelopoiesis and to the occurrence of a specific myeloid cell population. This is potentially evoked by sustained activity of Nfix, Runx1, and Nfe2l2 and dissociation of the transcriptional repressor Bach2. Previously reported trained immunity inducers are, however, infrequently present in the host, whereas heme abundantly occurs during noninfectious and infectious disease. This difference might explain the vanishing protection exerted by heme training in sepsis over time with sustained long-term myeloid adaptations. Hence, we propose that trained immunity is an integral component of innate immunity with distinct functional differences on infectious disease outcome depending on its induction by pathogenic or endogenous molecules.


Assuntos
Epigênese Genética , Heme/fisiologia , Imunidade Inata , Mielopoese , Animais , Humanos , Camundongos
10.
J Mol Cell Cardiol ; 179: 7-17, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36977444

RESUMO

Single-cell approaches have become an increasingly popular way of understanding the genetic factors behind disease. Isolation of DNA and RNA from human tissues is necessary to analyze multi-omic data sets, providing information on the single-cell genome, transcriptome, and epigenome. Here, we isolated high-quality single-nuclei from postmortem human heart tissues for DNA and RNA analysis. Postmortem human tissues were obtained from 106 individuals, 33 with a history of myocardial disease, diabetes, or smoking, and 73 controls without heart disease. We demonstrated that the Qiagen EZ1 instrument and kit consistently isolated genomic DNA of high yield, which can be used for checking DNA quality before conducting single-cell experiments. Here, we provide a method for single-nuclei isolation from cardiac tissue, otherwise known as the SoNIC method, which allows for the isolation of single cardiomyocyte nuclei from postmortem tissue by nuclear ploidy status. We also provide a detailed quality control measure for single-nuclei whole genome amplification and a pre-amplification method for confirming genomic integrity.


Assuntos
Núcleo Celular , Miocárdio , Humanos , Núcleo Celular/genética , Miócitos Cardíacos , DNA , RNA/genética , Análise de Célula Única/métodos
11.
BMC Bioinformatics ; 24(1): 349, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726653

RESUMO

BACKGROUND: Quantifying cell-type abundance in bulk tissue RNA-sequencing enables researchers to better understand complex systems. Newer deconvolution methodologies, such as MuSiC, use cell-type signatures derived from single-cell RNA-sequencing (scRNA-seq) data to make these calculations. Single-nuclei RNA-sequencing (snRNA-seq) reference data can be used instead of scRNA-seq data for tissues such as human brain where single-cell data are difficult to obtain, but accuracy suffers due to sequencing differences between the technologies. RESULTS: We propose a modification to MuSiC entitled 'DeTREM' which compensates for sequencing differences between the cell-type signature and bulk RNA-seq datasets in order to better predict cell-type fractions. We show DeTREM to be more accurate than MuSiC in simulated and real human brain bulk RNA-sequencing datasets with various cell-type abundance estimates. We also compare DeTREM to SCDC and CIBERSORTx, two recent deconvolution methods that use scRNA-seq cell-type signatures. We find that they perform well in simulated data but produce less accurate results than DeTREM when used to deconvolute human brain data. CONCLUSION: DeTREM improves the deconvolution accuracy of MuSiC and outperforms other deconvolution methods when applied to snRNA-seq data. DeTREM enables accurate cell-type deconvolution in situations where scRNA-seq data are not available. This modification improves characterization cell-type specific effects in brain tissue and identification of cell-type abundance differences under various conditions.


Assuntos
Encéfalo , RNA , Humanos , RNA/genética , RNA Nuclear Pequeno , RNA-Seq , Sequência de Bases
12.
BMC Bioinformatics ; 24(1): 47, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788477

RESUMO

BACKGROUND: Functional gene networks (FGNs) capture functional relationships among genes that vary across tissues and cell types. Construction of cell-type-specific FGNs enables the understanding of cell-type-specific functional gene relationships and insights into genetic mechanisms of human diseases in disease-relevant cell types. However, most existing FGNs were developed without consideration of specific cell types within tissues. RESULTS: In this study, we created a multimodal deep learning model (MDLCN) to predict cell-type-specific FGNs in the human brain by integrating single-nuclei gene expression data with global protein interaction networks. We systematically evaluated the prediction performance of the MDLCN and showed its superior performance compared to two baseline models (boosting tree and convolutional neural network). Based on the predicted cell-type-specific FGNs, we observed that cell-type marker genes had a higher level of hubness than non-marker genes in their corresponding cell type. Furthermore, we showed that risk genes underlying autism and Alzheimer's disease were more strongly connected in disease-relevant cell types, supporting the cellular context of predicted cell-type-specific FGNs. CONCLUSIONS: Our study proposes a powerful deep learning approach (MDLCN) to predict FGNs underlying a diverse set of cell types in human brain. The MDLCN model enhances prediction accuracy of cell-type-specific FGNs compared to single modality convolutional neural network (CNN) and boosting tree models, as shown by higher areas under both receiver operating characteristic (ROC) and precision-recall curves for different levels of independent test datasets. The predicted FGNs also show evidence for the cellular context and distinct topological features (i.e. higher hubness and topological score) of cell-type marker genes. Moreover, we observed stronger modularity among disease-associated risk genes in FGNs of disease-relevant cell types. For example, the strength of connectivity among autism risk genes was stronger in neurons, but risk genes underlying Alzheimer's disease were more connected in microglia.


Assuntos
Doença de Alzheimer , Aprendizado Profundo , Humanos , Redes Reguladoras de Genes , Doença de Alzheimer/genética , Redes Neurais de Computação , Encéfalo
13.
Hippocampus ; 33(4): 412-423, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36811254

RESUMO

Immature dentate granule cells (DGCs) generated in the hippocampus during adulthood are believed to play a unique role in dentate gyrus (DG) function. Although immature DGCs have hyperexcitable membrane properties in vitro, the consequences of this hyperexcitability in vivo remain unclear. In particular, the relationship between experiences that activate the DG, such as exploration of a novel environment (NE), and downstream molecular processes that modify DG circuitry in response to cellular activation is unknown in this cell population. We first performed quantification of immediate early gene (IEG) proteins in immature (5-week-old) and mature (13-week-old) DGCs from mice exposed to a NE. Paradoxically, we observed lower IEG protein expression in hyperexcitable immature DGCs. We then isolated nuclei from active and inactive immature DGCs and performed single-nuclei RNA-Sequencing. Compared to mature nuclei collected from the same animal, immature DGC nuclei showed less activity-induced transcriptional change, even though they were classified as active based on expression of ARC protein. These results demonstrate that the coupling of spatial exploration, cellular activation, and transcriptional change differs between immature and mature DGCs, with blunted activity-induced changes in immature cells.


Assuntos
Giro Denteado , Neurônios , Camundongos , Animais , Giro Denteado/fisiologia , Neurônios/fisiologia , Hipocampo , Neurogênese/fisiologia
14.
Acta Neuropathol ; 146(5): 725-745, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773216

RESUMO

Inclusion body myositis (IBM) is unique across the spectrum of idiopathic inflammatory myopathies (IIM) due to its distinct clinical presentation and refractoriness to current treatment approaches. One explanation for this resistance may be the engagement of cell-autonomous mechanisms that sustain or promote disease progression of IBM independent of inflammatory activity. In this study, we focused on senescence of tissue-resident cells as potential driver of disease. For this purpose, we compared IBM patients to non-diseased controls and immune-mediated necrotizing myopathy patients. Histopathological analysis suggested that cellular senescence is a prominent feature of IBM, primarily affecting non-myogenic cells. In-depth analysis by single nuclei RNA sequencing allowed for the deconvolution and study of muscle-resident cell populations. Among these, we identified a specific cluster of fibro-adipogenic progenitors (FAPs) that demonstrated key hallmarks of senescence, including a pro-inflammatory secretome, expression of p21, increased ß-galactosidase activity, and engagement of senescence pathways. FAP function is required for muscle cell health with changes to their phenotype potentially proving detrimental. In this respect, the transcriptomic landscape of IBM was also characterized by changes to the myogenic compartment demonstrating a pronounced loss of type 2A myofibers and a rarefication of acetylcholine receptor expressing myofibers. IBM muscle cells also engaged a specific pro-inflammatory phenotype defined by intracellular complement activity and the expression of immunogenic surface molecules. Skeletal muscle cell dysfunction may be linked to FAP senescence by a change in the collagen composition of the latter. Senescent FAPs lose collagen type XV expression, which is required to support myofibers' structural integrity and neuromuscular junction formation in vitro. Taken together, this study demonstrates an altered phenotypical landscape of muscle-resident cells and that FAPs, and not myofibers, are the primary senescent cell type in IBM.


Assuntos
Miosite de Corpos de Inclusão , Miosite , Humanos , Miosite de Corpos de Inclusão/metabolismo , Adipogenia , Colágeno/metabolismo , Músculo Esquelético/metabolismo
15.
Acta Neuropathol ; 146(3): 433-450, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37466726

RESUMO

The C9ORF72-linked diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by the nuclear depletion and cytoplasmic accumulation of TAR DNA-binding protein 43 (TDP-43). Recent studies have shown that the loss of TDP-43 function leads to the inclusion of cryptic exons (CE) in several RNA transcript targets of TDP-43. Here, we show for the first time the detection of CEs in a single-nuclei RNA sequencing (snRNA-seq) dataset obtained from frontal and occipital cortices of C9ORF72 patients that phenotypically span the ALS-FTD disease spectrum. We assessed each cellular cluster for detection of recently described TDP-43-induced CEs. Transcripts containing CEs in the genes STMN2 and KALRN were detected in the frontal cortex of all C9ORF72 disease groups with the highest frequency in excitatory neurons in the C9ORF72-FTD group. Within the excitatory neurons, the cluster with the highest proportion of cells containing a CE had transcriptomic similarities to von Economo neurons, which are known to be vulnerable to TDP-43 pathology and selectively lost in C9ORF72-FTD. Differential gene expression and pathway analysis of CE-containing neurons revealed multiple dysregulated metabolic processes. Our findings reveal novel insights into the transcriptomic changes of neurons vulnerable to TDP-43 pathology.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doença de Pick , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Transcriptoma , Doença de Pick/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Éxons , Análise de Sequência de RNA
16.
Eur Heart J ; 43(43): 4536-4547, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-35265972

RESUMO

Cardiovascular disease remains the leading cause of death worldwide. A deeper understanding of the multicellular composition and molecular processes may help to identify novel therapeutic strategies. Single-cell technologies such as single-cell or single-nuclei RNA sequencing provide expression profiles of individual cells and allow for dissection of heterogeneity in tissue during health and disease. This review will summarize (i) how these novel technologies have become critical for delineating mechanistic drivers of cardiovascular disease, particularly, in humans and (ii) how they might serve as diagnostic tools for risk stratification or individualized therapy. The review will further discuss technical pitfalls and provide an overview of publicly available human and mouse data sets that can be used as a resource for research.


Assuntos
Doenças Cardiovasculares , Humanos , Animais , Camundongos , Doenças Cardiovasculares/terapia , Análise de Sequência de RNA
17.
Alzheimers Dement ; 19(9): 3902-3915, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37037656

RESUMO

INTRODUCTION: European local ancestry (ELA) surrounding apolipoprotein E (APOE) ε4 confers higher risk for Alzheimer's disease (AD) compared to African local ancestry (ALA). We demonstrated significantly higher APOE ε4  expression in ELA versus ALA in AD brains from APOE ε4/ε4 carriers. Chromatin accessibility differences could contribute to these expression changes. METHODS: We performed single nuclei assays for transposase accessible chromatin sequencing from the frontal cortex of six ALA and six ELA AD brains, homozygous for local ancestry and APOE ε4. RESULTS: Our results showed an increased chromatin accessibility at the APOE ε4  promoter area in ELA versus ALA astrocytes. This increased accessibility in ELA astrocytes extended genome wide. Genes with increased accessibility in ELA in astrocytes were enriched for synapsis, cholesterol processing, and astrocyte reactivity. DISCUSSION: Our results suggest that increased chromatin accessibility of APOE ε4  in ELA astrocytes contributes to the observed elevated APOE ε4  expression, corresponding to the increased AD risk in ELA versus ALA APOE ε4/ε4 carriers.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Humanos , Apolipoproteína E4/genética , Doença de Alzheimer/genética , Doença de Alzheimer/complicações , Cromatina , Heterozigoto , Expressão Gênica
18.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003552

RESUMO

Osteosarcoma (OSA) is a highly aggressive bone tumor primarily affecting pediatric or adolescent humans and large-breed dogs. Canine OSA shares striking similarities with its human counterpart, making it an invaluable translational model for uncovering the disease's complexities and developing novel therapeutic strategies. Tumor heterogeneity, a hallmark of OSA, poses significant challenges to effective treatment due to the evolution of diverse cell populations that influence tumor growth, metastasis, and resistance to therapies. In this study, we apply single-nuclei multiome sequencing, encompassing ATAC (Assay for Transposase-Accessible Chromatin) and GEX (Gene Expression, or RNA) sequencing, to a treatment-naïve primary canine osteosarcoma. This comprehensive approach reveals the complexity of the tumor microenvironment by simultaneously capturing the transcriptomic and epigenomic profiles within the same nucleus. Furthermore, these results are analyzed in conjunction with bulk RNA sequencing and differential analysis of the same tumor and patient-matched normal bone. By delving into the intricacies of OSA at this unprecedented level of detail, we aim to unravel the underlying mechanisms driving intra-tumoral heterogeneity, opening new avenues for therapeutic interventions in both human and canine patients. This study pioneers an approach that is broadly applicable, while demonstrating significant heterogeneity in the context of a single individual's tumor.


Assuntos
Neoplasias Ósseas , Doenças do Cão , Osteossarcoma , Animais , Cães , Neoplasias Ósseas/genética , Neoplasias Ósseas/veterinária , Neoplasias Ósseas/tratamento farmacológico , Doenças do Cão/metabolismo , Expressão Gênica , Osteossarcoma/genética , Osteossarcoma/veterinária , Osteossarcoma/metabolismo , RNA , Microambiente Tumoral/genética
19.
J Neuroinflammation ; 19(1): 172, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780157

RESUMO

BACKGROUND: Deposition of amyloid beta (Aß) and hyperphosphorylated tau along with glial cell-mediated neuroinflammation are prominent pathogenic hallmarks of Alzheimer's disease (AD). In recent years, impairment of autophagy has been identified as another important feature contributing to AD progression. Therefore, the potential of the autophagy activator spermidine, a small body-endogenous polyamine often used as dietary supplement, was assessed on Aß pathology and glial cell-mediated neuroinflammation. RESULTS: Oral treatment of the amyloid prone AD-like APPPS1 mice with spermidine reduced neurotoxic soluble Aß and decreased AD-associated neuroinflammation. Mechanistically, single nuclei sequencing revealed AD-associated microglia to be the main target of spermidine. This microglia population was characterized by increased AXL levels and expression of genes implicated in cell migration and phagocytosis. A subsequent proteome analysis of isolated microglia confirmed the anti-inflammatory and cytoskeletal effects of spermidine in APPPS1 mice. In primary microglia and astrocytes, spermidine-induced autophagy subsequently affected TLR3- and TLR4-mediated inflammatory processes, phagocytosis of Aß and motility. Interestingly, spermidine regulated the neuroinflammatory response of microglia beyond transcriptional control by interfering with the assembly of the inflammasome. CONCLUSIONS: Our data highlight that the autophagy activator spermidine holds the potential to enhance Aß degradation and to counteract glia-mediated neuroinflammation in AD pathology.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Espermidina , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Espermidina/farmacologia , Espermidina/uso terapêutico
20.
Curr Diab Rep ; 22(4): 177-187, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35267142

RESUMO

PURPOSE OF REVIEW: The purpose of the current review is to summarize findings from the most recent and impactful studies which investigated human and mouse adipose tissue transcriptomes at a single-cell level. We provide perspective about the potential importance of data derived from these single-cell technologies in improving our understanding of the adipose organ and metabolic disease and likely future directions of this approach. RECENT FINDINGS: The majority of single-cell or single-nuclei studies of the adipose organ so far have focused on investigating the stromal-vascular fraction (SVF) of mouse subcutaneous and intraabdominal white and interscapular brown fat depots. Few studies have also evaluated the impact of additional factors as drivers of adipose phenotypes, such as high-fat diet-induced obesity, adolescence, aging, and cold exposure. Recent studies have also investigated human cell lines and human fat biopsies across a range of body mass index (BMI) and in response to insulin resistance or T2D. These studies have identified numerous previously unexplored subpopulations of adipocyte progenitors, immune cells, and mature adipocytes in both mice and men. Single-cell and single-nuclei technologies have brought an explosion of data that have advanced our understanding of the adipose organ in health and disease. However, we are still at the dawn of achieving a complete and comprehensive map of the mouse and human adipose organ. Multi-modal single-cell approaches to identify both anatomic localization of specific cellular populations and epigenetic mechanisms responsible for observed transcriptomic patterns are underway and will likely provide an even deeper understanding of the adipose organ in response to health and disease.


Assuntos
Tecido Adiposo Marrom , Resistência à Insulina , Adipócitos , Tecido Adiposo/metabolismo , Índice de Massa Corporal , Humanos , Obesidade/genética , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA