Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(23): 4448-4464.e17, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36272405

RESUMO

The recent development of spatial omics methods has enabled single-cell profiling of the transcriptome and 3D genome organization with high spatial resolution. Expanding the repertoire of spatial omics tools, a spatially resolved single-cell epigenomics method will accelerate understanding of the spatial regulation of cell and tissue functions. Here, we report a method for spatially resolved epigenomic profiling of single cells using in situ tagmentation and transcription followed by multiplexed imaging. We demonstrated the ability to profile histone modifications marking active promoters, putative enhancers, and silent promoters in individual cells, and generated high-resolution spatial atlas of hundreds of active promoters and putative enhancers in embryonic and adult mouse brains. Our results suggested putative promoter-enhancer pairs and enhancer hubs regulating developmentally important genes. We envision this approach will be generally applicable to spatial profiling of epigenetic modifications and DNA-binding proteins, advancing our understanding of how gene expression is spatiotemporally regulated by the epigenome.


Assuntos
Epigenômica , Código das Histonas , Camundongos , Animais , Regiões Promotoras Genéticas , Epigênese Genética , Transcriptoma , Elementos Facilitadores Genéticos , Cromatina
2.
Immunity ; 55(8): 1402-1413.e4, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35882235

RESUMO

The differentiation of innate lymphoid cells (ILCs) from hematopoietic stem cells needs to go through several multipotent progenitor stages. However, it remains unclear whether the fates of multipotent progenitors are predefined by epigenetic states. Here, we report the identification of distinct accessible chromatin regions in all lymphoid progenitors (ALPs), EILPs, and ILC precursors (ILCPs). Single-cell MNase-seq analyses revealed that EILPs contained distinct subpopulations epigenetically primed toward either dendritic cell lineages or ILC lineages. We found that TCF-1 and GATA3 co-bound to the lineage-defining sites for ILCs (LDS-Is), whereas PU.1 binding was enriched in the LDSs for alternative dendritic cells (LDS-As). TCF-1 and GATA3 were indispensable for the epigenetic priming of LDSs at the EILP stage. Our results suggest that the multipotency of progenitor cells is defined by the existence of a heterogeneous population of cells epigenetically primed for distinct downstream lineages, which are regulated by key transcription factors.


Assuntos
Imunidade Inata , Linfócitos , Diferenciação Celular , Linhagem da Célula , Epigênese Genética , Células-Tronco Hematopoéticas
3.
Mol Cell ; 83(1): 121-138.e7, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36521490

RESUMO

Cell cycle (CC) facilitates cell division via robust, cyclical gene expression. Protective immunity requires the expansion of pathogen-responsive cell types, but whether CC confers unique gene expression programs that direct the subsequent immunological response remains unclear. Here, we demonstrate that single macrophages (MFs) adopt different plasticity states in CC, which leads to heterogeneous cytokine-induced polarization, priming, and repolarization programs. Specifically, MF plasticity to interferon gamma (IFNG) is substantially reduced during S-G2/M, whereas interleukin 4 (IL-4) induces S-G2/M-biased gene expression, mediated by CC-biased enhancers. Additionally, IL-4 polarization shifts the CC-phase distribution of MFs toward the G2/M phase, providing a subpopulation-specific mechanism for IL-4-induced, dampened IFNG responsiveness. Finally, we demonstrate CC-dependent MF responses in murine and human disease settings in vivo, including Th2-driven airway inflammation and pulmonary fibrosis, where MFs express an S-G2/M-biased tissue remodeling gene program. Therefore, MF inflammatory and regenerative responses are gated by CC in a cyclical, phase-dependent manner.


Assuntos
Cromatina , Interleucina-4 , Humanos , Camundongos , Animais , Interleucina-4/genética , Interleucina-4/farmacologia , Cromatina/genética , Cromatina/metabolismo , Macrófagos/metabolismo , Interferon gama/genética , Interferon gama/farmacologia , Ciclo Celular/genética , Divisão Celular
4.
Immunity ; 48(2): 243-257.e10, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29466756

RESUMO

T cell development is orchestrated by transcription factors that regulate the expression of genes initially buried within inaccessible chromatin, but the transcription factors that establish the regulatory landscape of the T cell lineage remain unknown. Profiling chromatin accessibility at eight stages of T cell development revealed the selective enrichment of TCF-1 at genomic regions that became accessible at the earliest stages of development. TCF-1 was further required for the accessibility of these regulatory elements and at the single-cell level, it dictated a coordinate opening of chromatin in T cells. TCF-1 expression in fibroblasts generated de novo chromatin accessibility even at chromatin regions with repressive marks, inducing the expression of T cell-restricted genes. These results indicate that a mechanism by which TCF-1 controls T cell fate is through its widespread ability to target silent chromatin and establish the epigenetic identity of T cells.


Assuntos
Linhagem da Célula , Epigenômica , Fator 1-alfa Nuclear de Hepatócito/fisiologia , Fator 1 de Transcrição de Linfócitos T/fisiologia , Linfócitos T/fisiologia , Animais , Cromatina/fisiologia , Montagem e Desmontagem da Cromatina , Fibroblastos/metabolismo , Camundongos , Células NIH 3T3 , Transcrição Gênica
5.
Development ; 149(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36519514

RESUMO

DNA methylation is a highly conserved epigenetic modification that plays essential roles in mammalian gene regulation, genome stability and development. Despite being primarily considered a stable and heritable epigenetic silencing mechanism at heterochromatic and repetitive regions, whole genome methylome analysis reveals that DNA methylation can be highly cell-type specific and dynamic within proximal and distal gene regulatory elements during early embryonic development, stem cell differentiation and reprogramming, and tissue maturation. In this Review, we focus on the mechanisms and functions of regulated DNA methylation and demethylation, highlighting how these dynamics, together with crosstalk between DNA methylation and histone modifications at distinct regulatory regions, contribute to mammalian development and tissue maturation. We also discuss how recent technological advances in single-cell and long-read methylome sequencing, along with targeted epigenome-editing, are enabling unprecedented high-resolution and mechanistic dissection of DNA methylome dynamics.


Assuntos
Metilação de DNA , Epigenoma , Animais , Metilação de DNA/genética , Epigênese Genética , Código das Histonas , Mamíferos/genética
6.
Curr Cardiol Rep ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158785

RESUMO

PURPOSE OF REVIEW: This review aims to explore recent advances in single-cell omics techniques as applied to various regions of the human heart, illuminating cellular diversity, regulatory networks, and disease mechanisms. We examine the contributions of single-cell transcriptomics, genomics, proteomics, epigenomics, and spatial transcriptomics in unraveling the complexity of cardiac tissues. RECENT FINDINGS: Recent strides in single-cell omics technologies have revolutionized our understanding of the heart's cellular composition, cell type heterogeneity, and molecular dynamics. These advancements have elucidated pathological conditions as well as the cellular landscape in heart development. We highlight emerging applications of integrated single-cell omics, particularly for cardiac regeneration, disease modeling, and precision medicine, and emphasize the transformative potential of these technologies to advance cardiovascular research and clinical practice.

7.
Semin Cancer Biol ; 84: 60-68, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-32822861

RESUMO

Epigenetic patterns in a cell control the expression of genes and consequently determine the phenotype of a cell. Cancer cells possess altered epigenomes which include aberrant patterns of DNA methylation, histone tail modifications, nucleosome positioning and of the three-dimensional chromatin organization within a nucleus. These altered epigenetic patterns are potential useful biomarkers to detect cancer cells and to classify tumor types. In addition, the cancer epigenome dictates the response of a cancer cell to therapeutic intervention and, therefore its knowledge, will allow to predict response to different therapeutic approaches. Here we review the current state-of-the-art technologies that have been developed to decipher epigenetic patterns on the genomic level and discuss how these methods are potentially useful for precision oncology.


Assuntos
Epigenômica , Neoplasias , Montagem e Desmontagem da Cromatina , Metilação de DNA , Epigenômica/métodos , Humanos , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão
9.
Histochem Cell Biol ; 146(3): 239-54, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27412014

RESUMO

Huge numbers of cells form an adult animal body, ranging from several thousands in Placozoa and small nematodes to many billions in mammals. Cells are classified into separate groups known as cell types by their morphological and biochemical features. Six to several hundreds of spatially ordered cell types are recognized in different animals. This complex organization develops from one cell, a zygote, during ontogeny, and its dynamic equilibrium is often maintained in the adult body. One of the key challenges in biology is to understand the mechanisms that sustain the reproducible development of a complex ordered cell ensemble such as the animal body from a single cell. How cells with identical genomes stably maintain one of the numerous possible phenotypes? How the cell differentiation lineage is selected during development? What genes play a key role in maintaining cell identity, and how do they determine expression of other genes characteristic of the relevant cell type? How does the basically stochastic nature of transcription in an isolated cell affect the stability of cell identity, the selection of a cell lineage, and the variability of cell responses to external stimuli? Better-grounded answers to these questions have become possible with recent progress in single-cell genome-wide analysis techniques, which combine the high throughput of biochemical methods and the differential nature of microscopy. The techniques are still in their infancy, and their further development will certainly revolutionize many fields of life sciences and, in particular, developmental biology. Here, we summarize the main results that have been obtained in single-cell genome-wide analyses and describe the nongenetic cell-to-cell variability in animals.


Assuntos
Genoma , Análise de Célula Única , Animais
10.
bioRxiv ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38464242

RESUMO

Recent experimental developments enable single-cell multimodal epigenomic profiling, which measures multiple histone modifications and chromatin accessibility within the same cell. Such parallel measurements provide exciting new opportunities to investigate how epigenomic modalities vary together across cell types and states. A pivotal step in using this type of data is integrating the epigenomic modalities to learn a unified representation of each cell, but existing approaches are not designed to model the unique nature of this data type. Our key insight is to model single-cell multimodal epigenome data as a multi-channel sequential signal. Based on this insight, we developed ConvNet-VAEs, a novel framework that uses 1D-convolutional variational autoencoders (VAEs) for single-cell multimodal epigenomic data integration. We evaluated ConvNet-VAEs on nano-CT and scNTT-seq data generated from juvenile mouse brain and human bone marrow. We found that ConvNet-VAEs can perform dimension reduction and batch correction better than previous architectures while using significantly fewer parameters. Furthermore, the performance gap between convolutional and fully-connected architectures increases with the number of modalities, and deeper convolutional architectures can increase performance while performance degrades for deeper fully-connected architectures. Our results indicate that convolutional autoencoders are a promising method for integrating current and future single-cell multimodal epigenomic datasets.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38996445

RESUMO

Plants possess diverse cell types and intricate regulatory mechanisms to adapt to the ever-changing environment of nature. Various strategies have been employed to study cell types and their developmental progressions, including single-cell sequencing methods which provide high-dimensional catalogs to address biological concerns. In recent years, single-cell sequencing technologies in transcriptomics, epigenomics, proteomics, metabolomics, and spatial transcriptomics have been increasingly used in plant science to reveal intricate biological relationships at the single-cell level. However, the application of single-cell technologies to plants is more limited due to the challenges posed by cell structure. This review outlines the advancements in single-cell omics technologies, their implications in plant systems, future research applications, and the challenges of single-cell omics in plant systems.


Assuntos
Genômica , Metabolômica , Plantas , Proteômica , Análise de Célula Única , Análise de Célula Única/métodos , Plantas/genética , Plantas/metabolismo , Metabolômica/métodos , Proteômica/métodos , Genômica/métodos , Epigenômica/métodos , Transcriptoma/genética
12.
Brief Funct Genomics ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688725

RESUMO

As the demographic structure shifts towards an aging society, strategies aimed at slowing down or reversing the aging process become increasingly essential. Aging is a major predisposing factor for many chronic diseases in humans. The hematopoietic system, comprising blood cells and their associated bone marrow microenvironment, intricately participates in hematopoiesis, coagulation, immune regulation and other physiological phenomena. The aging process triggers various alterations within the hematopoietic system, serving as a spectrum of risk factors for hematopoietic disorders, including clonal hematopoiesis, immune senescence, myeloproliferative neoplasms and leukemia. The emerging single-cell technologies provide novel insights into age-related changes in the hematopoietic system. In this review, we summarize recent studies dissecting hematopoietic system aging using single-cell technologies. We discuss cellular changes occurring during aging in the hematopoietic system at the levels of the genomics, transcriptomics, epigenomics, proteomics, metabolomics and spatial multi-omics. Finally, we contemplate the future prospects of single-cell technologies, emphasizing the impact they may bring to the field of hematopoietic system aging research.

13.
Genome Biol ; 25(1): 114, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702740

RESUMO

Single-cell technologies offer insights into molecular feature distributions, but comparing them poses challenges. We propose a kernel-testing framework for non-linear cell-wise distribution comparison, analyzing gene expression and epigenomic modifications. Our method allows feature-wise and global transcriptome/epigenome comparisons, revealing cell population heterogeneities. Using a classifier based on embedding variability, we identify transitions in cell states, overcoming limitations of traditional single-cell analysis. Applied to single-cell ChIP-Seq data, our approach identifies untreated breast cancer cells with an epigenomic profile resembling persister cells. This demonstrates the effectiveness of kernel testing in uncovering subtle population variations that might be missed by other methods.


Assuntos
Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Neoplasias da Mama/genética , Transcriptoma , Epigenômica/métodos , Perfilação da Expressão Gênica/métodos , Feminino , Epigenoma
14.
Front Genet ; 14: 1089936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873935

RESUMO

We propose Destin2, a novel statistical and computational method for cross-modality dimension reduction, clustering, and trajectory reconstruction for single-cell ATAC-seq data. The framework integrates cellular-level epigenomic profiles from peak accessibility, motif deviation score, and pseudo-gene activity and learns a shared manifold using the multimodal input, followed by clustering and/or trajectory inference. We apply Destin2 to real scATAC-seq datasets with both discretized cell types and transient cell states and carry out benchmarking studies against existing methods based on unimodal analyses. Using cell-type labels transferred with high confidence from unmatched single-cell RNA sequencing data, we adopt four performance assessment metrics and demonstrate how Destin2 corroborates and improves upon existing methods. Using single-cell RNA and ATAC multiomic data, we further exemplify how Destin2's cross-modality integrative analyses preserve true cell-cell similarities using the matched cell pairs as ground truths. Destin2 is compiled as a freely available R package available at https://github.com/yuchaojiang/Destin2.

15.
Mol Cells ; 46(2): 86-98, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36859473

RESUMO

The genome is almost identical in all the cells of the body. However, the functions and morphologies of each cell are different, and the factors that determine them are the genes and proteins expressed in the cells. Over the past decades, studies on epigenetic information, such as DNA methylation, histone modifications, chromatin accessibility, and chromatin conformation have shown that these properties play a fundamental role in gene regulation. Furthermore, various diseases such as cancer have been found to be associated with epigenetic mechanisms. In this study, we summarized the biological properties of epigenetics and single-cell epigenomic profiling techniques, and discussed future challenges in the field of epigenetics.


Assuntos
Cromatina , Epigênese Genética , Animais , Metilação de DNA , Epigenômica , Processamento de Proteína Pós-Traducional , Mamíferos
16.
Cell Rep ; 38(2): 110220, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021081

RESUMO

The epigenome delineates lineage-specific transcriptional programs and restricts cell plasticity to prevent non-physiological cell fate transitions. Although cell diversification fosters tumor evolution and therapy resistance, upstream mechanisms that regulate the stability and plasticity of the cancer epigenome remain elusive. Here we show that 2-hydroxyglutarate (2HG) not only suppresses DNA repair but also mediates the high-plasticity chromatin landscape. A combination of single-cell epigenomics and multi-omics approaches demonstrates that 2HG disarranges otherwise well-preserved stable nucleosome positioning and promotes cell-to-cell variability. 2HG induces loss of motif accessibility to the luminal-defining transcriptional factors FOXA1, FOXP1, and GATA3 and a shift from luminal to basal-like gene expression. Breast tumors with high 2HG exhibit enhanced heterogeneity with undifferentiated epigenomic signatures linked to adverse prognosis. Further, ascorbate-2-phosphate (A2P) eradicates heterogeneity and impairs growth of high 2HG-producing breast cancer cells. These findings suggest 2HG as a key determinant of cancer plasticity and provide a rational strategy to counteract tumor cell evolution.


Assuntos
Cromatina/metabolismo , Glutaratos/metabolismo , Oxirredutases do Álcool/metabolismo , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Reparo do DNA/fisiologia , Epigenoma/genética , Fatores de Transcrição Forkhead/genética , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Humanos , Isocitrato Desidrogenase/genética , Neoplasias/genética , Neoplasias/metabolismo , Nucleossomos/metabolismo , Proteínas Repressoras/genética
17.
Dis Model Mech ; 14(1)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33735102

RESUMO

Human lifespan is now longer than ever and, as a result, modern society is getting older. Despite that, the detailed mechanisms behind the ageing process and its impact on various tissues and organs remain obscure. In general, changes in DNA, RNA and protein structure throughout life impair their function. Haematopoietic ageing refers to the age-related changes affecting a haematopoietic system. Aged blood cells display different functional aberrations depending on their cell type, which might lead to the development of haematologic disorders, including leukaemias, anaemia or declining immunity. In contrast to traditional bulk assays, which are not suitable to dissect cell-to-cell variation, single-cell-level analysis provides unprecedented insight into the dynamics of age-associated changes in blood. In this Review, we summarise recent studies that dissect haematopoietic ageing at the single-cell level. We discuss what cellular changes occur during haematopoietic ageing at the genomic, transcriptomic, epigenomic and metabolomic level, and provide an overview of the benefits of investigating those changes with single-cell precision. We conclude by considering the potential clinical applications of single-cell techniques in geriatric haematology, focusing on the impact on haematopoietic stem cell transplantation in the elderly and infection studies, including recent COVID-19 research.


Assuntos
Envelhecimento/fisiologia , Sistema Hematopoético/fisiologia , Análise de Célula Única/métodos , Envelhecimento/genética , Animais , Medula Óssea/fisiologia , Dano ao DNA , Epigenoma , Glicólise , Transplante de Células-Tronco Hematopoéticas , Humanos , Mutação , Transcriptoma
18.
Genes (Basel) ; 12(8)2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34440455

RESUMO

The kidney is among the best characterized developing tissues, with the genes and signaling pathways that regulate embryonic and adult kidney patterning and development having been extensively identified. It is now widely understood that DNA methylation and histone modification patterns are imprinted during embryonic development and must be maintained in adult cells for appropriate gene transcription and phenotypic stability. A compelling question then is how these epigenetic mechanisms play a role in kidney development. In this review, we describe the major genes and pathways that have been linked to epigenetic mechanisms in kidney development. We also discuss recent applications of single-cell RNA sequencing (scRNA-seq) techniques in the study of kidney development. Additionally, we summarize the techniques of single-cell epigenomics, which can potentially be used to characterize epigenomes at single-cell resolution in embryonic and adult kidneys. The combination of scRNA-seq and single-cell epigenomics will help facilitate the further understanding of early cell lineage specification at the level of epigenetic modifications in embryonic and adult kidney development, which may also be used to investigate epigenetic mechanisms in kidney diseases.


Assuntos
Epigênese Genética/genética , Rim/crescimento & desenvolvimento , Organogênese/genética , Transcrição Gênica , Diferenciação Celular/genética , Linhagem da Célula/genética , Metilação de DNA/genética , Desenvolvimento Embrionário/genética , Histonas/genética , Humanos , Processamento de Proteína Pós-Traducional/genética
19.
Curr Opin Chem Biol ; 57: 17-26, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32304986

RESUMO

Understanding multicellular physiology and pathobiology requires analysis of the relationship between genotype, chromatin organisation and phenotype. In the multi-omics era, many methods exist to investigate biological processes across the genome, transcriptome, epigenome, proteome and metabolome. Until recently, this was only possible for populations of cells or complex tissues, creating an averaging effect that may obscure direct correlations between multiple layers of data. Single-cell sequencing methods have removed this averaging effect, but computational integration after profiling distinct modalities separately may still not completely reflect underlying biology. Multiplexed assays resolving multiple modalities in the same cell are required to overcome these shortcomings and have the potential to deliver unprecedented understanding of biology and disease.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Célula Única/métodos , Animais , Epigênese Genética , Epigenômica/métodos , Humanos
20.
Neuron ; 96(3): 542-557, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29096072

RESUMO

A comprehensive characterization of neuronal cell types, their distributions, and patterns of connectivity is critical for understanding the properties of neural circuits and how they generate behaviors. Here we review the experiences of the BRAIN Initiative Cell Census Consortium, ten pilot projects funded by the U.S. BRAIN Initiative, in developing, validating, and scaling up emerging genomic and anatomical mapping technologies for creating a complete inventory of neuronal cell types and their connections in multiple species and during development. These projects lay the foundation for a larger and longer-term effort to generate whole-brain cell atlases in species including mice and humans.


Assuntos
Atlas como Assunto , Mapeamento Encefálico/métodos , Encéfalo/citologia , Encéfalo/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Animais , Encéfalo/anatomia & histologia , Mapeamento Encefálico/tendências , Humanos , Rede Nervosa/anatomia & histologia , Projetos Piloto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA