Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(5): 107266, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583864

RESUMO

We describe molecular-level functional changes in the α4ß2 nicotinic acetylcholine receptor by a leucine residue insertion in the M2 transmembrane domain of the α4 subunit associated with sleep-related hyperkinetic epilepsy. Measurements of agonist-elicited single-channel currents reveal the primary effect is to stabilize the open channel state, while the secondary effect is to promote reopening of the channel. These dual effects prolong the durations of bursts of channel openings equally for the two major stoichiometric forms of the receptor, (α4)2(ß2)3 and (α4)3(ß2)2, indicating the functional impact is independent of mutant copy number per receptor. Altering the location of the residue insertion within M2 shows that functionally pivotal structures are confined to a half turn of the M2 α-helix. Residue substitutions within M2 and surrounding α-helices reveal that both intrasubunit and intersubunit interactions mediate the increase in burst duration. These interactions impacting burst duration depend linearly on the size and hydrophobicity of the substituting residue. Together, the results reveal a novel structural region of the α4ß2 nicotinic acetylcholine receptor in which interhelical interactions tune the stability of the open channel state.


Assuntos
Ativação do Canal Iônico , Receptores Nicotínicos , Animais , Humanos , Células HEK293 , Ativação do Canal Iônico/genética , Mutagênese Insercional , Domínios Proteicos , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/química , Xenopus laevis
2.
Methods Cell Biol ; 160: 61-82, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32896333

RESUMO

Plants possess numerous ion channels that respond to a range of stimuli, including small molecules, transmembrane voltage, and mechanical force. Many in the latter category, known as mechanosensitive (MS) ion channels, open directly in response to increases in lateral membrane tension. One of the most effective techniques for characterizing ion channel properties is patch-clamp electrophysiology, in which the current through a section of membrane containing ion channels is measured. For MS channels, this technique enables the measurement of key channel properties such as tension sensitivity, conductance, and ion selectivity. These characteristics, along with the phenotypes of genetic mutants, can help reveal the physiological roles of a particular MS channel. In this protocol, we provide detailed instructions on how to study MS ion channels using single-channel patch-clamp electrophysiology in giant E. coli spheroplasts. We first present an optimized method for preparing giant spheroplasts, then describe how to measure MS channel activity using patch-clamp electrophysiology and analyze the resulting data. We also provide recommended equipment lists, setup schematics, and useful conventions.


Assuntos
Fenômenos Eletrofisiológicos , Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular , Técnicas de Patch-Clamp/métodos , Plantas/metabolismo , Esferoplastos/metabolismo , Animais , Galinhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA