Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
1.
Cell ; 186(7): 1465-1477.e18, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001505

RESUMO

Receptor activity-modifying proteins (RAMPs) modulate the activity of many Family B GPCRs. We show that RAMP2 directly interacts with the glucagon receptor (GCGR), a Family B GPCR responsible for blood sugar homeostasis, and broadly inhibits receptor-induced downstream signaling. HDX-MS experiments demonstrate that RAMP2 enhances local flexibility in select locations in and near the receptor extracellular domain (ECD) and in the 6th transmembrane helix, whereas smFRET experiments show that this ECD disorder results in the inhibition of active and intermediate states of the intracellular surface. We determined the cryo-EM structure of the GCGR-Gs complex at 2.9 Å resolution in the presence of RAMP2. RAMP2 apparently does not interact with GCGR in an ordered manner; however, the receptor ECD is indeed largely disordered along with rearrangements of several intracellular hallmarks of activation. Our studies suggest that RAMP2 acts as a negative allosteric modulator of GCGR by enhancing conformational sampling of the ECD.


Assuntos
Glucagon , Receptores de Glucagon , Membrana Celular/metabolismo , Glucagon/metabolismo , Receptores de Glucagon/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/metabolismo
2.
Cell ; 185(24): 4474-4487.e17, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36334590

RESUMO

How the eukaryotic 43S preinitiation complex scans along the 5' untranslated region (5' UTR) of a capped mRNA to locate the correct start codon remains elusive. Here, we directly track yeast 43S-mRNA binding, scanning, and 60S subunit joining by real-time single-molecule fluorescence spectroscopy. 43S engagement with mRNA occurs through a slow, ATP-dependent process driven by multiple initiation factors including the helicase eIF4A. Once engaged, 43S scanning occurs rapidly and directionally at ∼100 nucleotides per second, independent of multiple cycles of ATP hydrolysis by RNA helicases post ribosomal loading. Scanning ribosomes can proceed through RNA secondary structures, but 5' UTR hairpin sequences near start codons drive scanning ribosomes at start codons backward in the 5' direction, requiring rescanning to arrive once more at a start codon. Direct observation of scanning ribosomes provides a mechanistic framework for translational regulation by 5' UTR structures and upstream near-cognate start codons.


Assuntos
Ribossomos , Saccharomyces cerevisiae , Códon de Iniciação/metabolismo , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas
3.
Cell ; 184(2): 534-544.e11, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33373586

RESUMO

Determination of what is the specificity of subunits composing a protein complex is essential when studying gene variants on human pathophysiology. The pore-forming α-subunit KCNQ1, which belongs to the voltage-gated ion channel superfamily, associates to its ß-auxiliary subunit KCNE1 to generate the slow cardiac potassium IKs current, whose dysfunction leads to cardiac arrhythmia. Using pharmacology, gene invalidation, and single-molecule fluorescence assays, we found that KCNE1 fulfils all criteria of a bona fide auxiliary subunit of the TMEM16A chloride channel, which belongs to the anoctamin superfamily. Strikingly, assembly with KCNE1 switches TMEM16A from a calcium-dependent to a voltage-dependent ion channel. Importantly, clinically relevant inherited mutations within the TMEM16A-regulating domain of KCNE1 abolish the TMEM16A modulation, suggesting that the TMEM16A-KCNE1 current may contribute to inherited pathologies. Altogether, these findings challenge the dogma of the specificity of auxiliary subunits regarding protein complexes and questions ion channel classification.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Subunidades Proteicas/metabolismo , Animais , Anoctamina-1/metabolismo , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Células HEK293 , Humanos , Túbulos Renais Proximais/metabolismo , Camundongos , Proteínas Mutantes/metabolismo , Peptídeos/metabolismo , Polimorfismo Genético , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Ligação Proteica , Domínios Proteicos , Sistema Renina-Angiotensina
4.
Cell ; 178(3): 600-611.e16, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31348887

RESUMO

The eukaryotic replicative helicase CMG is a closed ring around double-stranded (ds)DNA at origins yet must transition to single-stranded (ss)DNA for helicase action. CMG must also handle repair intermediates, such as reversed forks that lack ssDNA. Here, using correlative single-molecule fluorescence and force microscopy, we show that CMG harbors a ssDNA gate that enables transitions between ss and dsDNA. When coupled to DNA polymerase, CMG remains on ssDNA, but when uncoupled, CMG employs this gate to traverse forked junctions onto dsDNA. Surprisingly, CMG undergoes rapid diffusion on dsDNA and can transition back onto ssDNA to nucleate a functional replisome. The gate-distinct from that between Mcm2/5 used for origin loading-is intrinsic to CMG; however, Mcm10 promotes strand passage by enhancing the affinity of CMG to DNA. This gating process may explain the dsDNA-to-ssDNA transition of CMG at origins and help preserve CMG on dsDNA during fork repair.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA/metabolismo , Replicação do DNA , DNA de Cadeia Simples/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Cell ; 179(6): 1357-1369.e16, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31761533

RESUMO

Ribosome assembly is an efficient but complex and heterogeneous process during which ribosomal proteins assemble on the nascent rRNA during transcription. Understanding how the interplay between nascent RNA folding and protein binding determines the fate of transcripts remains a major challenge. Here, using single-molecule fluorescence microscopy, we follow assembly of the entire 3' domain of the bacterial small ribosomal subunit in real time. We find that co-transcriptional rRNA folding is complicated by the formation of long-range RNA interactions and that r-proteins self-chaperone the rRNA folding process prior to stable incorporation into a ribonucleoprotein (RNP) complex. Assembly is initiated by transient rather than stable protein binding, and the protein-RNA binding dynamics gradually decrease during assembly. This work questions the paradigm of strictly sequential and cooperative ribosome assembly and suggests that transient binding of RNA binding proteins to cellular RNAs could provide a general mechanism to shape nascent RNA folding during RNP assembly.


Assuntos
Dobramento de RNA , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Modelos Biológicos , Conformação de Ácido Nucleico , Ligação Proteica , Estabilidade de RNA , RNA Ribossômico/química , Transcrição Gênica
6.
Cell ; 179(6): 1370-1381.e12, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31761536

RESUMO

The synthesis of new ribosomes begins during transcription of the rRNA and is widely assumed to follow an orderly 5' to 3' gradient. To visualize co-transcriptional assembly of ribosomal protein-RNA complexes in real time, we developed a single-molecule platform that simultaneously monitors transcription and protein association with the elongating transcript. Unexpectedly, the early assembly protein uS4 binds newly made pre-16S rRNA only transiently, likely due to non-native folding of the rRNA during transcription. Stable uS4 binding became more probable only in the presence of additional ribosomal proteins that bind upstream and downstream of protein uS4 by allowing productive assembly intermediates to form earlier. We propose that dynamic sampling of elongating RNA by multiple proteins overcomes heterogeneous RNA folding, preventing assembly bottlenecks and initiating assembly within the transcription time window. This may be a common feature of transcription-coupled RNP assembly.


Assuntos
Ribonucleoproteínas/metabolismo , Transcrição Gênica , Fluorescência , Modelos Biológicos , Ligação Proteica , Estabilidade Proteica , Precursores de RNA/biossíntese , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Elongação da Transcrição Genética
7.
Cell ; 174(4): 926-937.e12, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-29961575

RESUMO

Influenza hemagglutinin (HA) is the canonical type I viral envelope glycoprotein and provides a template for the membrane-fusion mechanisms of numerous viruses. The current model of HA-mediated membrane fusion describes a static "spring-loaded" fusion domain (HA2) at neutral pH. Acidic pH triggers a singular irreversible conformational rearrangement in HA2 that fuses viral and cellular membranes. Here, using single-molecule Förster resonance energy transfer (smFRET)-imaging, we directly visualized pH-triggered conformational changes of HA trimers on the viral surface. Our analyses reveal reversible exchange between the pre-fusion and two intermediate conformations of HA2. Acidification of pH and receptor binding shifts the dynamic equilibrium of HA2 in favor of forward progression along the membrane-fusion reaction coordinate. Interaction with the target membrane promotes irreversible transition of HA2 to the post-fusion state. The reversibility of HA2 conformation may protect against transition to the post-fusion state prior to arrival at the target membrane.


Assuntos
Membrana Celular/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A/fisiologia , Influenza Humana/metabolismo , Imagem Individual de Molécula/métodos , Células A549 , Transferência Ressonante de Energia de Fluorescência/métodos , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Hemaglutininas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Influenza Humana/virologia , Ligação Proteica , Conformação Proteica , Internalização do Vírus
8.
Mol Cell ; 83(9): 1489-1501.e5, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37116495

RESUMO

Small ribonucleoproteins (sRNPs) target nascent precursor RNAs to guide folding, modification, and splicing during transcription. Yet, rapid co-transcriptional folding of the RNA can mask sRNP sites, impeding target recognition and regulation. To examine how sRNPs target nascent RNAs, we monitored binding of bacterial Hfq⋅DsrA sRNPs to rpoS transcripts using single-molecule co-localization co-transcriptional assembly (smCoCoA). We show that Hfq⋅DsrA recursively samples the mRNA before transcription of the target site to poise it for base pairing with DsrA. We adapted smCoCoA to precisely measure when the target site is synthesized and revealed that Hfq⋅DsrA often binds the mRNA during target site synthesis close to RNA polymerase (RNAP). We suggest that targeting transcripts near RNAP allows an sRNP to capture a site before the transcript folds, providing a kinetic advantage over post-transcriptional targeting. We propose that other sRNPs may also use RNAP-proximal targeting to hasten recognition and regulation.


Assuntos
Proteínas de Escherichia coli , Pequeno RNA não Traduzido , Proteínas de Bactérias/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Mensageiro/metabolismo , Pareamento de Bases , RNA Bacteriano/metabolismo , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica
9.
Mol Cell ; 83(7): 1153-1164.e4, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36917983

RESUMO

Genomic DNA is a crowded track where motor proteins frequently collide. It remains underexplored whether these collisions carry physiological function. In this work, we develop a single-molecule assay to visualize the trafficking of individual E. coli RNA polymerases (RNAPs) on DNA. Based on transcriptomic data, we hypothesize that RNAP collisions drive bidirectional transcription termination of convergent gene pairs. Single-molecule results show that the head-on collision between two converging RNAPs is necessary to prevent transcriptional readthrough but insufficient to release the RNAPs from the DNA. Remarkably, co-directional collision of a trailing RNAP into the head-on collided complex dramatically increases the termination efficiency. Furthermore, stem-loop structures formed in the nascent RNA are required for collisions to occur at well-defined positions between convergent genes. These findings suggest that physical collisions between RNAPs furnish a mechanism for transcription termination and that programmed genomic conflicts can be exploited to co-regulate the expression of multiple genes.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/metabolismo , DNA/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
10.
Mol Cell ; 82(2): 304-314, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35063098

RESUMO

Owing to their unique abilities to manipulate, label, and image individual molecules in vitro and in cellulo, single-molecule techniques provide previously unattainable access to elementary biological processes. In imaging, single-molecule fluorescence resonance energy transfer (smFRET) and protein-induced fluorescence enhancement in vitro can report on conformational changes and molecular interactions, single-molecule pull-down (SiMPull) can capture and analyze the composition and function of native protein complexes, and single-molecule tracking (SMT) in live cells reveals cellular structures and dynamics. In labeling, the abilities to specifically label genomic loci, mRNA, and nascent polypeptides in cells have uncovered chromosome organization and dynamics, transcription and translation dynamics, and gene expression regulation. In manipulation, optical tweezers, integration of single-molecule fluorescence with force measurements, and single-molecule force probes in live cells have transformed our mechanistic understanding of diverse biological processes, ranging from protein folding, nucleic acids-protein interactions to cell surface receptor function.


Assuntos
Genômica/tendências , Imagem Molecular/tendências , Imagem Óptica/tendências , Imagem Individual de Molécula/tendências , Animais , Difusão de Inovações , Transferência Ressonante de Energia de Fluorescência/tendências , Humanos , Microscopia de Fluorescência/tendências , Proteômica/tendências
11.
Mol Cell ; 77(3): 488-500.e9, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31761495

RESUMO

Pioneer transcription factors (pTFs) bind to target sites within compact chromatin, initiating chromatin remodeling and controlling the recruitment of downstream factors. The mechanisms by which pTFs overcome the chromatin barrier are not well understood. Here, we reveal, using single-molecule fluorescence, how the yeast transcription factor Rap1 invades and remodels chromatin. Using a reconstituted chromatin system replicating yeast promoter architecture, we demonstrate that Rap1 can bind nucleosomal DNA within a chromatin fiber but with shortened dwell times compared to naked DNA. Moreover, we show that Rap1 binding opens chromatin fiber structure by inhibiting inter-nucleosome contacts. Finally, we reveal that Rap1 collaborates with the chromatin remodeler RSC to displace promoter nucleosomes, paving the way for long-lived bound states on newly exposed DNA. Together, our results provide a mechanistic view of how Rap1 gains access and opens chromatin, thereby establishing an active promoter architecture and controlling gene expression.


Assuntos
Cromatina/metabolismo , Nucleossomos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Fatores de Transcrição/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/genética , Nucleossomos/metabolismo , Nucleossomos/fisiologia , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Fatores de Transcrição/genética
12.
Mol Cell ; 75(5): 1007-1019.e5, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31471187

RESUMO

The movement of ribosomes on mRNA is often interrupted by secondary structures that present mechanical barriers and play a central role in translation regulation. We investigate how ribosomes couple their internal conformational changes with the activity of translocation factor EF-G to unwind mRNA secondary structures using high-resolution optical tweezers with single-molecule fluorescence capability. We find that hairpin opening occurs during EF-G-catalyzed translocation and is driven by the forward rotation of the small subunit head. Modulating the magnitude of the hairpin barrier by force shows that ribosomes respond to strong barriers by shifting their operation to an alternative 7-fold-slower kinetic pathway prior to translocation. Shifting into a slow gear results from an allosteric switch in the ribosome that may allow it to exploit thermal fluctuations to overcome mechanical barriers. Finally, we observe that ribosomes occasionally open the hairpin in two successive sub-codon steps, revealing a previously unobserved translocation intermediate.


Assuntos
Escherichia coli/química , Conformação de Ácido Nucleico , Pinças Ópticas , RNA Bacteriano/química , RNA Mensageiro/química , Ribossomos/química , Escherichia coli/metabolismo , Fluorescência , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
13.
Immunity ; 46(1): 38-50, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27986454

RESUMO

Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, binds Toll-like receptor 4 (TLR4)-MD2 complex and activates innate immune responses. LPS transfer to TLR4-MD2 is catalyzed by both LPS binding protein (LBP) and CD14. To define the sequential molecular interactions underlying this transfer, we reconstituted in vitro the entire LPS transfer process from LPS micelles to TLR4-MD2. Using electron microscopy and single-molecule approaches, we characterized the dynamic intermediate complexes for LPS transfer: LBP-LPS micelles, CD14-LBP-LPS micelle, and CD14-LPS-TLR4-MD2 complex. A single LBP molecule bound longitudinally to LPS micelles catalyzed multi-rounds of LPS transfer to CD14s that rapidly dissociated from LPB-LPS complex upon LPS transfer via electrostatic interactions. Subsequently, the single LPS molecule bound to CD14 was transferred to TLR4-MD2 in a TLR4-dependent manner. The definition of the structural determinants of the LPS transfer cascade to TLR4 may enable the development of targeted therapeutics for intervention in LPS-induced sepsis.


Assuntos
Proteínas de Fase Aguda/imunologia , Proteínas de Transporte/imunologia , Receptores de Lipopolissacarídeos/imunologia , Lipopolissacarídeos/imunologia , Antígeno 96 de Linfócito/imunologia , Glicoproteínas de Membrana/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Transdução de Sinais/imunologia
14.
Mol Cell ; 70(1): 60-71.e15, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29606590

RESUMO

Fidaxomicin is an antibacterial drug in clinical use for treatment of Clostridium difficile diarrhea. The active ingredient of fidaxomicin, lipiarmycin A3 (Lpm), functions by inhibiting bacterial RNA polymerase (RNAP). Here we report a cryo-EM structure of Mycobacterium tuberculosis RNAP holoenzyme in complex with Lpm at 3.5-Å resolution. The structure shows that Lpm binds at the base of the RNAP "clamp." The structure exhibits an open conformation of the RNAP clamp, suggesting that Lpm traps an open-clamp state. Single-molecule fluorescence resonance energy transfer experiments confirm that Lpm traps an open-clamp state and define effects of Lpm on clamp dynamics. We suggest that Lpm inhibits transcription by trapping an open-clamp state, preventing simultaneous interaction with promoter -10 and -35 elements. The results account for the absence of cross-resistance between Lpm and other RNAP inhibitors, account for structure-activity relationships of Lpm derivatives, and enable structure-based design of improved Lpm derivatives.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Fidaxomicina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Sítios de Ligação , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , Desenho de Fármacos , Farmacorresistência Bacteriana/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/ultraestrutura , Fidaxomicina/química , Fidaxomicina/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Modelos Moleculares , Mutação , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/ultraestrutura , Ligação Proteica , Conformação Proteica , Imagem Individual de Molécula , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Relação Estrutura-Atividade
15.
Proc Natl Acad Sci U S A ; 120(15): e2216777120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011199

RESUMO

Replication protein A (RPA) is a eukaryotic single-stranded (ss) DNA-binding (SSB) protein that is essential for all aspects of genome maintenance. RPA binds ssDNA with high affinity but can also diffuse along ssDNA. By itself, RPA is capable of transiently disrupting short regions of duplex DNA by diffusing from a ssDNA that flanks the duplex DNA. Using single-molecule total internal reflection fluorescence and optical trapping combined with fluorescence approaches, we show that S. cerevisiae Pif1 can use its ATP-dependent 5' to 3' translocase activity to chemomechanically push a single human RPA (hRPA) heterotrimer directionally along ssDNA at rates comparable to those of Pif1 translocation alone. We further show that using its translocation activity, Pif1 can push hRPA from a ssDNA loading site into a duplex DNA causing stable disruption of at least 9 bp of duplex DNA. These results highlight the dynamic nature of hRPA enabling it to be readily reorganized even when bound tightly to ssDNA and demonstrate a mechanism by which directional DNA unwinding can be achieved through the combined action of a ssDNA translocase that pushes an SSB protein. These results highlight the two basic requirements for any processive DNA helicase: transient DNA base pair melting (supplied by hRPA) and ATP-dependent directional ssDNA translocation (supplied by Pif1) and that these functions can be unlinked by using two separate proteins.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ligação Proteica/genética , Proteína de Replicação A/metabolismo , DNA de Cadeia Simples/metabolismo , DNA/metabolismo , Trifosfato de Adenosina/metabolismo , DNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(30): e2301402120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459525

RESUMO

DNA transcription initiates after an RNA polymerase (RNAP) molecule binds to the promoter of a gene. In bacteria, the canonical picture is that RNAP comes from the cytoplasmic pool of freely diffusing RNAP molecules. Recent experiments suggest the possible existence of a separate pool of polymerases, competent for initiation, which freely slide on the DNA after having terminated one round of transcription. Promoter-dependent transcription reinitiation from this pool of posttermination RNAP may lead to coupled initiation at nearby operons, but it is unclear whether this can occur over the distance and timescales needed for it to function widely on a bacterial genome in vivo. Here, we mathematically model the hypothesized reinitiation mechanism as a diffusion-to-capture process and compute the distances over which significant interoperon coupling can occur and the time required. These quantities depend on molecular association and dissociation rate constants between DNA, RNAP, and the transcription initiation factor σ70; we measure these rate constants using single-molecule experiments in vitro. Our combined theory/experimental results demonstrate that efficient coupling can occur at physiologically relevant σ70 concentrations and on timescales appropriate for transcript synthesis. Coupling is efficient over terminator-promoter distances up to ∼1,000 bp, which includes the majority of terminator-promoter nearest neighbor pairs in the Escherichia coli genome. The results suggest a generalized mechanism that couples the transcription of nearby operons and breaks the paradigm that each binding of RNAP to DNA can produce at most one messenger RNA.


Assuntos
RNA Polimerases Dirigidas por DNA , DNA , RNA Polimerases Dirigidas por DNA/metabolismo , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regiões Promotoras Genéticas , Óperon/genética , Transcrição Gênica , Fator sigma/genética , DNA Bacteriano/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(30): e2308010120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459531

RESUMO

Cellular eukaryotic replication initiation helicases are first loaded as head-to-head double hexamers on double-stranded (ds) DNA origins and then initiate S-phase DNA melting during licensed (once per cell cycle) replication. Merkel cell polyomavirus (MCV) large T (LT) helicase oncoprotein similarly binds and melts its own 98-bp origin but replicates multiple times in a single cell cycle. To examine the actions of this unlicensed viral helicase, we quantitated multimerization of MCV LT molecules as they assembled on MCV DNA origins using real-time single-molecule microscopy. MCV LT formed highly stable double hexamers having 17-fold longer mean lifetime (τ, >1,500 s) on DNA than single hexamers. Unexpectedly, partial MCV LT assembly without double-hexamer formation was sufficient to melt origin dsDNA as measured by RAD51, RPA70, or S1 nuclease cobinding. DNA melting also occurred with truncated MCV LT proteins lacking the helicase domain, but was lost from a protein without the multimerization domain that could bind only as a monomer to DNA. SV40 polyomavirus LT also multimerized to the MCV origin without forming a functional hexamer but still melted origin DNA. MCV origin melting did not require ATP hydrolysis and occurred for both MCV and SV40 LT proteins using the nonhydrolyzable ATP analog, adenylyl-imidodiphosphate (AMP-PNP). LT double hexamers formed in AMP-PNP, and melted DNA, consistent with direct LT hexamer assembly around single-stranded (ss) DNA without the energy-dependent dsDNA-to-ssDNA melting and remodeling steps used by cellular helicases. These results indicate that LT multimerization rather than helicase activity is required for origin DNA melting during unlicensed virus replication.


Assuntos
Antígenos Transformantes de Poliomavirus , Vírus 40 dos Símios , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Vírus 40 dos Símios/genética , Vírus 40 dos Símios/metabolismo , Desnaturação de Ácido Nucleico , Adenilil Imidodifosfato , Replicação do DNA , DNA/genética , DNA/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , DNA de Cadeia Simples , DNA Viral/genética , DNA Viral/metabolismo
18.
Trends Biochem Sci ; 46(11): 889-901, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34176739

RESUMO

Ribonucleoprotein (RNP) assembly typically begins during transcription when folding of the newly synthesized RNA is coupled with the recruitment of RNA-binding proteins (RBPs). Upon binding, the proteins induce structural rearrangements in the RNA that are crucial for the next steps of assembly. Focusing primarily on bacterial ribosome assembly, we discuss recent work showing that early RNA-protein interactions are more dynamic than previously supposed, and remain so, until sufficient proteins are recruited to each transcript to consolidate an entire domain of the RNP. We also review studies showing that stable assembly of an RNP competes against modification and processing of the RNA. Finally, we discuss how transcription sets the timeline for competing and cooperative RNA-RBP interactions that determine the fate of the nascent RNA. How this dance is coordinated is the focus of this review.


Assuntos
RNA Ribossômico , RNA , RNA/química , RNA Ribossômico/química , Proteínas de Ligação a RNA/metabolismo
19.
EMBO J ; 40(1): e105415, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33185289

RESUMO

Membrane transporters mediate cellular uptake of nutrients, signaling molecules, and drugs. Their overall mechanisms are often well understood, but the structural features setting their rates are mostly unknown. Earlier single-molecule fluorescence imaging of the archaeal model glutamate transporter homologue GltPh from Pyrococcus horikoshii suggested that the slow conformational transition from the outward- to the inward-facing state, when the bound substrate is translocated from the extracellular to the cytoplasmic side of the membrane, is rate limiting to transport. Here, we provide insight into the structure of the high-energy transition state of GltPh that limits the rate of the substrate translocation process. Using bioinformatics, we identified GltPh gain-of-function mutations in the flexible helical hairpin domain HP2 and applied linear free energy relationship analysis to infer that the transition state structurally resembles the inward-facing conformation. Based on these analyses, we propose an approach to search for allosteric modulators for transporters.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Proteínas Arqueais/metabolismo , Transporte Biológico/fisiologia , Sistema X-AG de Transporte de Aminoácidos/genética , Archaea/genética , Archaea/metabolismo , Proteínas Arqueais/genética , Transporte Biológico/genética , Biologia Computacional/métodos , Mutação com Ganho de Função/genética , Modelos Moleculares , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , Especificidade por Substrato/genética
20.
Proc Natl Acad Sci U S A ; 119(14): e2114639119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349346

RESUMO

SignificanceHere, with single-molecule fluorescence microscopy, we study the catalytic behavior of individual Pt atoms at single-turnover resolution, and then reveal the unique catalytic properties of Pt single-atom catalyst and the difference in catalytic properties between individual Pt atoms and Pt nanoparticles. Further density functional theory calculation indicates that unique catalytic properties of Pt single-atom catalyst could be attributed intrinsically to the unique surface properties of Pt1-based active sites.


Assuntos
Nanopartículas , Platina , Catálise , Cinética , Platina/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA