Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(10): e23629, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38742770

RESUMO

The molecular and cellular basis of health in human tendons remains poorly understood. Among human tendons, hamstring tendon has markedly low pathology and can provide a prototypic healthy tendon reference. The aim of this study was to determine the transcriptomes and location of all cell types in healthy hamstring tendon. Using single nucleus RNA sequencing, we profiled the transcriptomes of 10 533 nuclei from four healthy donors and identified 12 distinct cell types. We confirmed the presence of two fibroblast cell types, endothelial cells, mural cells, and immune cells, and identified cell types previously unreported in tendons, including different skeletal muscle cell types, satellite cells, adipocytes, and undefined nervous system cells. The location of these cell types within tendon was defined using spatial transcriptomics and imaging, and potential transcriptional networks and cell-cell interactions were analyzed. We demonstrate that fibroblasts have the highest number of potential cell-cell interactions in our dataset, are present throughout the tendon, and play an important role in the production and organization of extracellular matrix, thus confirming their role as key regulators of hamstring tendon homeostasis. Overall, our findings underscore the complexity of the cellular networks that underpin healthy human tendon function and the central role of fibroblasts as key regulators of hamstring tendon tissue homeostasis.


Assuntos
Perfilação da Expressão Gênica , Tendões dos Músculos Isquiotibiais , Transcriptoma , Humanos , Masculino , Adulto , Tendões dos Músculos Isquiotibiais/metabolismo , Fibroblastos/metabolismo , Feminino , Núcleo Celular/metabolismo , Núcleo Celular/genética , Matriz Extracelular/metabolismo , Tendões/metabolismo
2.
Addict Biol ; 28(1): e13250, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577731

RESUMO

Gene expression studies offer promising opportunities to better understand the processes underlying alcohol use disorder (AUD). As cell types differ in their function, gene expression profiles will typically vary across cell types. When studying bulk tissue, failure to account for this cellular diversity has a detrimental impact on the ability to detect disease associations. We therefore assayed the transcriptomes of 32,531 individual nuclei extracted from the nucleus accumbens (NAc) of nine donors with AUD and nine controls (72% male). Our study identified 17 clearly delineated cell types. We detected 26 transcriptome-wide significant differentially expressed genes (DEGs) that mainly involved medium spiny neurons with both D1-type and D2-type dopamine receptors, microglia (MGL) and oligodendrocytes. A higher than expected number of DEGs replicated in an existing single nucleus gene expression study of alcohol dependence in the prefrontal cortex (enrichment ratio 1.91, p value 0.019) with two genes remaining significant after a Bonferroni correction. Our most compelling result involved CD53 in MGL that replicated in the same cell type in the prefrontal cortex and was previously implicated in studies of DNA methylation, bulk gene expression and genetic variants. Several DEGs were previously reported to be associated with AUD (e.g., PER1 and MGAT5). The DEGs for MSN.3 seemed involved in neurodegeneration, disruption of circadian rhythms, alterations in glucose metabolism and changes in synaptic plasticity. For MGL, the DEGs implicated neuroinflammation and immune-related processes and for OLI, disruptions in myelination. This identification of the specific cell-types from which the association signals originate will be key for designing proper follow-up experiments and, eventually, novel clinical interventions.


Assuntos
Alcoolismo , Núcleo Accumbens , Masculino , Feminino , Animais , Camundongos , Núcleo Accumbens/metabolismo , Alcoolismo/genética , Alcoolismo/metabolismo , Transcriptoma , Receptores de Dopamina D1/metabolismo , Consumo de Bebidas Alcoólicas , Receptores de Dopamina D2/metabolismo , Camundongos Endogâmicos C57BL
3.
Acta Neuropathol ; 142(2): 295-321, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34019156

RESUMO

Chronic traumatic encephalopathy (CTE) is a progressive tauopathy found in contact sport athletes, military veterans, and others exposed to repetitive head impacts. White matter rarefaction and axonal loss have been reported in CTE but have not been characterized on a molecular or cellular level. Here, we present RNA sequencing profiles of cell nuclei from postmortem dorsolateral frontal white matter from eight individuals with neuropathologically confirmed CTE and eight age- and sex-matched controls. Analyzing these profiles using unbiased clustering approaches, we identified eighteen transcriptomically distinct cell groups (clusters), reflecting cell types and/or cell states, of which a subset showed differences between CTE and control tissue. Independent in situ methods applied on tissue sections adjacent to that used in the single-nucleus RNA-seq work yielded similar findings. Oligodendrocytes were found to be most severely affected in the CTE white matter samples; they were diminished in number and altered in relative proportions across subtype clusters. Further, the CTE-enriched oligodendrocyte population showed greater abundance of transcripts relevant to iron metabolism and cellular stress response. CTE tissue also demonstrated excessive iron accumulation histologically. In astrocytes, total cell numbers were indistinguishable between CTE and control samples, but transcripts associated with neuroinflammation were elevated in the CTE astrocyte groups compared to controls. These results demonstrate specific molecular and cellular differences in CTE oligodendrocytes and astrocytes and suggest that white matter alterations are a critical aspect of CTE neurodegeneration.


Assuntos
Astrócitos/patologia , Encefalopatia Traumática Crônica/patologia , Oligodendroglia/metabolismo , Tauopatias/patologia , Idoso , Astrócitos/metabolismo , Atletas , Traumatismos em Atletas/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neuroinflamatórias/patologia , Oligodendroglia/patologia , Esportes , Substância Branca/patologia , Proteínas tau/metabolismo
4.
J Genet Genomics ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244085

RESUMO

Nicotine is widely recognized as the primary contributor to tobacco dependence. Previous studies have indicated that molecular and behavioral responses to nicotine are primarily mediated by ventral tegmental area (VTA) neurons, and accumulating evidence suggests that glia play prominent roles in nicotine addiction. However, VTA neurons and glia have yet to be characterized at the transcriptional level during the progression of nicotine self-administration. Here, a male mouse model of nicotine self-administration was established and the timing of three critical phases (pre-addiction, addicting, and post-addiction phase) was characterized. Single-nucleus RNA sequencing (snRNA-seq) in the VTA at each phase was performed to comprehensively classify specific cell subtypes. Adaptive changes occurred during the addicting and post-addiction phases, with the addicting phase displaying highly dynamic neuroplasticity that profoundly impacted the transcription in each cell subtype. Furthermore, significant transcriptional changes in energy metabolism-related genes were observed, accompanied by notable structural alterations in neuronal mitochondria during the progression of nicotine self-administration. The results provide insights into mechanisms underlying the progression of nicotine addiction, serving as important resource for identifying potential molecular targets for nicotine cessation.

5.
bioRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37986846

RESUMO

The rete ovarii (RO) is an epithelial structure that arises during fetal development in close proximity to the ovary and persists throughout adulthood in mice. However, the functional significance of the RO remains elusive, and it has been absent from recent discussions of female reproductive anatomy. The RO comprises three distinct regions: the intraovarian rete (IOR) within the ovary, the extraovarian rete (EOR) in the periovarian tissue, and the connecting rete (CR) linking the EOR and IOR. We hypothesize that the RO plays a pivotal role in maintaining ovarian homeostasis and responding to physiological changes. To uncover the nature and function of RO cells, we conducted transcriptome analysis, encompassing bulk, single-cell, and nucleus-level sequencing of both fetal and adult RO tissues using the Pax8-rtTA; Tre-H2B-GFP mouse line, where all RO regions express nuclear GFP. This study presents three datasets, which highlight RO-specific gene expression signatures and reveal differences in gene expression across the three RO regions during development and in adulthood. The integration and rigorous validation of these datasets will advance our understanding of the RO's roles in ovarian development, female maturation, and adult female fertility.

6.
J Hazard Mater ; 430: 128459, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739658

RESUMO

With the prevalence of nanoplastics in daily life, human exposure is inevitable. However, whether and how nanoplastics cause neurotoxicity in humans remains obscure. Herein, we conducted a 28-day repeated dose oral toxicity study in C57BL/6 J mice exposed to 0.25-250 mg/kg body weight (BW) polystyrene nanoplastics (PS-NPs, 50 nm). We revealed that PS-NP-caused Parkinson's disease (PD)-like neurodegeneration in mice by multiple approaches. Furthermore, a single-nucleus RNA sequencing of 62,843 brain nuclei unearthed PS-NP-induced cell-specific responses in the mouse brains. These disturbed responses among various brain cells were primarily linked with energy metabolism disorder and mitochondrial dysfunction in all brain cells, and especially in excitatory neurons, accompanied by inflammatory turbulence in astrocytes and microglia, dysfunction of proteostasis and synaptic-function regulation in astrocytes, oligodendrocytes, and endotheliocytes. These responses may synergize in PS-NP-motivated PD-like neurodegeneration pathogenesis. Moreover, we verified these single-nucleus transcriptomics findings on different brain regions and found that PS-NPs potentially caused PD-like neurodegeneration primarily by causing energy metabolism disorder in the substantia nigra pars compacta (SNc) and striatum. This manifested as decreases in adenosine triphosphate (ATP) content and expression levels of ATP-associated genes and proteins. Given nanoplastics' inevitable and growing exposure risks to humans, the neurological health risks of nanoplastic exposure warrant serious consideration.


Assuntos
Doença de Parkinson , Trifosfato de Adenosina/metabolismo , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Metabolismo Energético , Camundongos , Camundongos Endogâmicos C57BL , Microplásticos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Poliestirenos/metabolismo , Poliestirenos/toxicidade , Transcriptoma
7.
Curr Opin Plant Biol ; 65: 102113, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34562694

RESUMO

Single-cell RNA-sequencing has greatly increased the spatiotemporal resolution of root transcriptomics data, but we are still only scratching the surface of its full potential. Despite the challenges that remain in the field, the orderly aligned structure of the Arabidopsis root meristem makes it specifically suitable for lineage tracing and trajectory analysis. These methods will become even more potent by increasing resolution and specificity using tissue-specific single-cell RNA-sequencing and spatial transcriptomics. Feeding multiple single-cell omics data sets into single-cell gene regulatory networks will accelerate the discovery of regulators of root development in multiple species. By providing transcriptome atlases for virtually any species, single-cell technologies could tempt many root developmental biologists to move beyond the comfort of the well-known Arabidopsis root meristem.


Assuntos
Arabidopsis , Meristema/genética , RNA , Análise de Célula Única , Transcriptoma
8.
Cell Stem Cell ; 29(11): 1594-1610.e8, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36332572

RESUMO

The molecular diversity of glia in the human hippocampus and their temporal dynamics over the lifespan remain largely unknown. Here, we performed single-nucleus RNA sequencing to generate a transcriptome atlas of the human hippocampus across the postnatal lifespan. Detailed analyses of astrocytes, oligodendrocyte lineages, and microglia identified subpopulations with distinct molecular signatures and revealed their association with specific physiological functions, age-dependent changes in abundance, and disease relevance. We further characterized spatiotemporal heterogeneity of GFAP-enriched astrocyte subpopulations in the hippocampal formation using immunohistology. Leveraging glial subpopulation classifications as a reference map, we revealed the diversity of glia differentiated from human pluripotent stem cells and identified dysregulated genes and pathological processes in specific glial subpopulations in Alzheimer's disease (AD). Together, our study significantly extends our understanding of human glial diversity, population dynamics across the postnatal lifespan, and dysregulation in AD and provides a reference atlas for stem-cell-based glial differentiation.


Assuntos
Doença de Alzheimer , Transcriptoma , Humanos , Transcriptoma/genética , Longevidade/genética , Neuroglia/patologia , Hipocampo , Astrócitos/patologia , Doença de Alzheimer/patologia
9.
Biomedicines ; 10(12)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36552051

RESUMO

An increasing amount of evidence points to an important role of macrophages in peripheral nerve injury (PNI) and associated pain. Peripheral nerve macrophages facilitate the regeneration, while dorsal root ganglia (DRG) macrophages might propagate the injury after a PNI. These differences might be explained by various in vivo models of PNIs or non-uniform methodologies to phenotype the macrophages. Unbiased methods to phenotype macrophages using single whole cell or nucleus transcriptomics have been rarely applied on PNIs outside the nerves themselves. Here, we compare the effects of the transection or crush of the sciatic nerve and spinal nerve transection on the DRG macrophage phenotypes utilizing a publicly available single-nucleus transcriptomic DRG dataset. Our results demonstrate that unique and time-dependent DRG macrophage gene expression profiles were produced by the three PNI models with particular macrophage clusters being enriched that were dependent on the severity of the neuronal injury score. PNI associated DRG macrophages were not purely anti- or pro-inflammatory. These results suggest that various functions of DRG macrophage subtypes are carefully orchestrated upon a PNI. These findings open a new avenue for studying the DRG macrophage subtypes in PNIs and encourage further unbiased phenotyping efforts to better understand their relevance in neuropathic pain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA