Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732803

RESUMO

A two-stage decoupling model based on an artificial neural network with polynomial regression is proposed for the six-component force sensor load decoupling problem in the case of multidimensional mixed loading. The six-dimensional load categorization stage model constructed in the first stage combines 63 load category label sets with a deep BP neural network. The six-dimensional load regression stage model was constructed by combining polynomial regression with a BP neural network in the second stage. Meanwhile, the six-component force sensor with a fiber Bragg grating (FBG) sensor as the sensitive element was designed, and the elastomer simulation and calibration experimental dataset was established to realize the validation of the two-stage decoupling model. The results based on the simulation data show that the accuracy of the classification stage is 93.65%. The MAPE for the force channel in the regression stage is 6.29%, and 3.24% for the moment channel. The results based on experimental data show that the accuracy of the classification stage is 87.80%. The MAPE for the force channel in the regression phase is 5.63%, and 4.82% for the moment channel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA