RESUMO
Cytidine triphosphate synthase (CTPS) forms cytoophidia in all three domains of life. Here we focus on the function of cytoophidia in cell proliferation using Schizosaccharomyces pombe as a model system. We find that converting His359 of CTPS into Ala359 leads to cytoophidium disassembly. By reducing the level of CTPS protein or specific mutation, the loss of cytoophidia prolongs the G2 phase and expands cell size. In addition, the loss-filament mutant of CTPS leads to a decrease in the expression of genes related to G2/M transition and cell growth, including histone chaperone slm9. The overexpression of slm9 alleviates the G2 phase elongation and cell size enlargement induced by CTPS loss-filament mutants. Overall, our results connect cytoophidia with cell cycle and cell size control in Schizosaccharomyces pombe.
Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Ciclo Celular/genética , Divisão Celular , Proliferação de Células , Fase G2RESUMO
The cytoophidium, a subcellular structure composed of CTP synthase, can be observed during the division of Schizosaccharomyces pombe. Cytoophidium formation changes periodically with the cell cycle of yeast cells. Here, we find that histone chaperone Slm9 is required for the integrity of cytoophidia in fission yeast. When the slm9 gene is knocked out, we observe that morphological characteristics, the abundance of cytoophidia and the division of the yeast cells are significantly affected. Fragmented cytoophidia occur in slm9 mutant cells, a phenomenon rarely observed in wild-type cells. Our study reveals a potential link between a chromosomal regulatory factor and cytoophidium biogenesis.