Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
J Biol Chem ; 300(10): 107770, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39270823

RESUMO

Dynamic ADP-ribosylation signaling is a crucial pathway that controls fundamental cellular processes, in particular, the response to cellular stresses such as DNA damage, reactive oxygen species, and infection. In some pathogenic microbes, the response to oxidative stress is controlled by a SirTM/zinc-containing macrodomain (Zn-Macro) pair responsible for establishment and removal of the modification, respectively. Targeting this defence mechanism against the host's innate immune response may lead to novel approaches to support the fight against emerging antimicrobial resistance. Earlier studies suggested that Zn-Macros play a key role in the activation of this defence. Therefore, we used phylogenetic, biochemical, and structural approaches to elucidate the functional properties of these enzymes. Using the substrate mimetic asparagine-ADP-ribose as well as the ADP-ribose product, we characterize the catalytic role of the zinc ion in the removal of the ADP-ribosyl modification. Furthermore, we determined structural properties that contribute to substrate selectivity within the different Zn-Macro branches. Together, our data not only give new insights into the Zn-Macro family but also highlight their distinct features that may be exploited for the development of future therapies.


Assuntos
ADP-Ribosilação , Adenosina Difosfato Ribose , Evolução Molecular , Zinco , Zinco/metabolismo , Zinco/química , Adenosina Difosfato Ribose/metabolismo , Domínios Proteicos , Humanos , Filogenia
2.
J Biol Chem ; 300(6): 107368, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750793

RESUMO

Activating signal co-integrator complex 1 (ASCC1) acts with ASCC-ALKBH3 complex in alkylation damage responses. ASCC1 uniquely combines two evolutionarily ancient domains: nucleotide-binding K-Homology (KH) (associated with regulating splicing, transcriptional, and translation) and two-histidine phosphodiesterase (PDE; associated with hydrolysis of cyclic nucleotide phosphate bonds). Germline mutations link loss of ASCC1 function to spinal muscular atrophy with congenital bone fractures 2 (SMABF2). Herein analysis of The Cancer Genome Atlas (TCGA) suggests ASCC1 RNA overexpression in certain tumors correlates with poor survival, Signatures 29 and 3 mutations, and genetic instability markers. We determined crystal structures of Alvinella pompejana (Ap) ASCC1 and Human (Hs) PDE domain revealing high-resolution details and features conserved over 500 million years of evolution. Extending our understanding of the KH domain Gly-X-X-Gly sequence motif, we define a novel structural Helix-Clasp-Helix (HCH) nucleotide binding motif and show ASCC1 sequence-specific binding to CGCG-containing RNA. The V-shaped PDE nucleotide binding channel has two His-Φ-Ser/Thr-Φ (HXT) motifs (Φ being hydrophobic) positioned to initiate cyclic phosphate bond hydrolysis. A conserved atypical active-site histidine torsion angle implies a novel PDE substrate. Flexible active site loop and arginine-rich domain linker appear regulatory. Small-angle X-ray scattering (SAXS) revealed aligned KH-PDE RNA binding sites with limited flexibility in solution. Quantitative evolutionary bioinformatic analyses of disease and cancer-associated mutations support implied functional roles for RNA binding, phosphodiesterase activity, and regulation. Collective results inform ASCC1's roles in transactivation and alkylation damage responses, its targeting by structure-based inhibitors, and how ASCC1 mutations may impact inherited disease and cancer.


Assuntos
Diester Fosfórico Hidrolases , Humanos , Biologia Computacional/métodos , Cristalografia por Raios X , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Motivos de Ligação ao RNA/genética
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042817

RESUMO

Biofilms are multicellular microbial communities that encase themselves in an extracellular matrix (ECM) of secreted biopolymers and attach to surfaces and interfaces. Bacterial biofilms are detrimental in hospital and industrial settings, but they can be beneficial, for example, in agricultural as well as in food technology contexts. An essential property of biofilms that grants them with increased survival relative to planktonic cells is phenotypic heterogeneity, the division of the biofilm population into functionally distinct subgroups of cells. Phenotypic heterogeneity in biofilms can be traced to the cellular level; however, the molecular structures and elemental distribution across whole biofilms, as well as possible linkages between them, remain unexplored. Mapping X-ray diffraction across intact biofilms in time and space, we revealed the dominant structural features in Bacillus subtilis biofilms, stemming from matrix components, spores, and water. By simultaneously following the X-ray fluorescence signal of biofilms and isolated matrix components, we discovered that the ECM preferentially binds calcium ions over other metal ions, specifically, zinc, manganese, and iron. These ions, remaining free to flow below macroscopic wrinkles that act as water channels, eventually accumulate and may possibly lead to sporulation. The possible link between ECM properties, regulation of metal ion distribution, and sporulation across whole, intact biofilms unravels the importance of molecular-level heterogeneity in shaping biofilm physiology and development.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas Amiloidogênicas/metabolismo , Proteínas de Bactérias/metabolismo , Matriz Extracelular/fisiologia , Íons/metabolismo , Espalhamento de Radiação , Espalhamento a Baixo Ângulo , Raios X
4.
J Biol Chem ; 298(10): 102371, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35970386

RESUMO

Kidney disease often manifests with an increase in proteinuria, which can result from both glomerular and/or proximal tubule injury. The proximal tubules are the major site of protein and peptide endocytosis of the glomerular filtrate, and cubilin is the proximal tubule brush border membrane glycoprotein receptor that binds filtered albumin and initiates its processing in proximal tubules. Albumin also undergoes multiple modifications depending upon the physiologic state. We previously documented that carbamylated albumin had reduced cubilin binding, but the effects of cubilin modifications on binding albumin remain unclear. Here, we investigate the cubilin-albumin binding interaction to define the impact of cubilin glycosylation and map the key glycosylation sites while also targeting specific changes in a rat model of proteinuria. We identified a key Asn residue, N1285, that when glycosylated reduced albumin binding. In addition, we found a pH-induced conformation change may contribute to ligand release. To further define the albumin-cubilin binding site, we determined the solution structure of cubilin's albumin-binding domain, CUB7,8, using small-angle X-ray scattering and molecular modeling. We combined this information with mass spectrometry crosslinking experiments of CUB7,8 and albumin that provides a model of the key amino acids required for cubilin-albumin binding. Together, our data supports an important role for glycosylation in regulating the cubilin interaction with albumin, which is altered in proteinuria and provides new insight into the binding interface necessary for the cubilin-albumin interaction.


Assuntos
Albuminas , Asparagina , Túbulos Renais Proximais , Receptores de Superfície Celular , Animais , Ratos , Albuminas/metabolismo , Endocitose/fisiologia , Glicosilação , Túbulos Renais Proximais/metabolismo , Proteinúria/metabolismo , Asparagina/genética , Asparagina/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
5.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298260

RESUMO

CP12 is a redox-dependent conditionally disordered protein universally distributed in oxygenic photosynthetic organisms. It is primarily known as a light-dependent redox switch regulating the reductive step of the metabolic phase of photosynthesis. In the present study, a small angle X-ray scattering (SAXS) analysis of recombinant Arabidopsis CP12 (AtCP12) in a reduced and oxidized form confirmed the highly disordered nature of this regulatory protein. However, it clearly pointed out a decrease in the average size and a lower level of conformational disorder upon oxidation. We compared the experimental data with the theoretical profiles of pools of conformers generated with different assumptions and show that the reduced form is fully disordered, whereas the oxidized form is better described by conformers comprising both the circular motif around the C-terminal disulfide bond detected in previous structural analysis and the N-terminal disulfide bond. Despite the fact that disulfide bridges are usually thought to confer rigidity to protein structures, in the oxidized AtCP12, their presence coexists with a disordered nature. Our results rule out the existence of significant amounts of structured and compact conformations of free AtCP12 in a solution, even in its oxidized form, thereby highlighting the importance of recruiting partner proteins to complete its structured final folding.


Assuntos
Arabidopsis , Proteínas Intrinsicamente Desordenadas , Arabidopsis/genética , Arabidopsis/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Oxirredução , Dissulfetos/metabolismo , Conformação Proteica , Proteínas Intrinsicamente Desordenadas/química
6.
J Struct Biol ; 214(4): 107903, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36210037

RESUMO

Phospholipase A and Acyltransferase 4 (PLAAT4) is a class II tumor suppressor, that also plays a role as a restrictor of intracellular Toxoplasma gondii infection through restriction of parasitic vacuole size. The catalytic N-terminal domain (NTD) interacts with the C-terminal domain (CTD), which is important for sub-cellular targeting and enzymatic function. The dynamics of the NTD main (L1) loop and the L2(B6) loop adjacent to the active site, have been shown to be important regulators of enzymatic activity. Here, we present the crystal structure of PLAAT4 NTD, determined from severely intergrown crystals using automated, laser-based crystal harvesting and data reduction technologies. The structure showed the L1 loop in two distinct conformations, highlighting a complex network of interactions likely influencing its conformational flexibility. Ensemble refinement of the crystal structure recapitulates the major correlated motions observed in solution by NMR. Our analysis offers useful insights on millisecond dynamics based on the crystal structure, complementing NMR studies which preclude structural information at this time scale.


Assuntos
Fosfolipases , Domínio Catalítico
7.
J Biol Chem ; 297(3): 101054, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34364873

RESUMO

Liver intestine (LI)-cadherin is a member of the cadherin superfamily, which encompasses a group of Ca2+-dependent cell-adhesion proteins. The expression of LI-cadherin is observed on various types of cells in the human body, such as normal small intestine and colon cells, and gastric cancer cells. Because its expression is not observed on normal gastric cells, LI-cadherin is a promising target for gastric cancer imaging. However, because the cell adhesion mechanism of LI-cadherin has remained unknown, rational design of therapeutic molecules targeting this cadherin has been hampered. Here, we have studied the homodimerization mechanism of LI-cadherin. We report the crystal structure of the LI-cadherin homodimer containing its first four extracellular cadherin repeats (EC1-4). The EC1-4 homodimer exhibited a unique architecture different from that of other cadherins reported so far, driven by the interactions between EC2 of one protein chain and EC4 of the second protein chain. The crystal structure also revealed that LI-cadherin possesses a noncanonical calcium ion-free linker between the EC2 and EC3 domains. Various biochemical techniques and molecular dynamics simulations were employed to elucidate the mechanism of homodimerization. We also showed that the formation of the homodimer observed in the crystal structure is necessary for LI-cadherin-dependent cell adhesion by performing cell aggregation assays. Taken together, our data provide structural insights necessary to advance the use of LI-cadherin as a target for imaging gastric cancer.


Assuntos
Caderinas/química , Caderinas/metabolismo , Caderinas/genética , Adesão Celular , Agregação Celular , Cristalografia por Raios X , Dimerização , Humanos , Domínios Proteicos , Estrutura Terciária de Proteína
8.
J Biol Chem ; 296: 100312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33482195

RESUMO

Elevated plasma triglycerides are a risk factor for coronary artery disease, which is the leading cause of death worldwide. Lipoprotein lipase (LPL) reduces triglycerides in the blood by hydrolyzing them from triglyceride-rich lipoproteins to release free fatty acids. LPL activity is regulated in a nutritionally responsive manner by macromolecular inhibitors including angiopoietin-like proteins 3 and 4 (ANGPTL3 and ANGPTL4). However, the mechanism by which ANGPTL3 inhibits LPL is unclear, in part due to challenges in obtaining pure protein for study. We used a new purification protocol for the N-terminal domain of ANGPTL3, removing a DNA contaminant, and found DNA-free ANGPTL3 showed enhanced inhibition of LPL. Structural analysis showed that ANGPTL3 formed elongated, flexible trimers and hexamers that did not interconvert. ANGPTL4 formed only elongated flexible trimers. We compared the inhibition of ANGPTL3 and ANGPTL4 using human very-low-density lipoproteins as a substrate and found both were noncompetitive inhibitors. The inhibition constants for the trimeric ANGPTL3 (7.5 ± 0.7 nM) and ANGPTL4 (3.6 ± 1.0 nM) were only 2-fold different. Heparin has previously been reported to interfere with ANGPTL3 binding to LPL, so we questioned if the negatively charged heparin was acting in a similar fashion to the DNA contaminant. We found that ANGPTL3 inhibition is abolished by binding to low-molecular-weight heparin, whereas ANGPTL4 inhibition is not. Our data show new similarities and differences in how ANGPTL3 and ANGPTL4 regulate LPL and opens new avenues of investigating the effect of heparin on LPL inhibition by ANGPTL3.


Assuntos
Proteína 4 Semelhante a Angiopoietina/química , Proteínas Semelhantes a Angiopoietina/química , Doença da Artéria Coronariana/genética , Lipase Lipoproteica/química , Conformação Proteica , Proteína 3 Semelhante a Angiopoietina , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/ultraestrutura , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/ultraestrutura , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/patologia , Heparina/farmacologia , Humanos , Lipase Lipoproteica/genética , Lipase Lipoproteica/ultraestrutura , Lipoproteínas VLDL/química , Lipoproteínas VLDL/genética , Ligação Proteica/efeitos dos fármacos , Especificidade por Substrato , Triglicerídeos/sangue
9.
Small ; 18(5): e2104211, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34825488

RESUMO

Growing concerns of bacterial resistance against conventional antibiotics shifts the research focus toward antimicrobial peptide (AMP)-based materials. Most AMPs kill gram-negative bacteria by destroying their inner membrane, but have to first pass the outer membrane covered with lipopolysaccharides (LPS). Their interplay with the LPS is crucial for bactericidal activity, but is yet to be elucidated in detail. In this study, self-assemblies of Escherichia coli LPS with the human cathelicidin AMP LL-37, free and encapsulated into glyceryl monooleate (GMO) lipid nanoparticles, are analyzed using synchrotron small angle X-ray scattering, dynamic light scattering, and cryogenic transmission electron microscopy. Circular dichroism spectroscopy is used to study modifications in LL-37's secondary structure. LPS is found to form elongated micelles and the addition of LL-37 induces their transformation to multilamellar structures. LPS' addition to GMO cubosomes triggers the swelling of the internal cubic structure, while in multilamellar GMO/LL-37 nanocarriers it causes transitions into unstructured particles. The insights on the interactions among LPS and LL-37, in its free form or encapsulated in GMO dispersions, may guide the design of LPS-responsive antimicrobial nanocarriers. The findings may further assist the formulation of antimicrobial nanomaterials with enhanced penetration of LPS layers for improved destruction of bacterial membranes.


Assuntos
Peptídeos Antimicrobianos , Lipopolissacarídeos , Bactérias , Humanos , Lipossomos , Nanopartículas
10.
Macromol Rapid Commun ; 43(11): e2200148, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35343619

RESUMO

The bulk enthalpy of melting of α-crystals of poly (L-lactic acid) (PLLA) is evaluated by fast scanning calorimetry (FSC), by correlating the melting enthalpy of samples of different crystallinity with the corresponding heat capacity at 90 °C, that is at a temperature higher than the glass transition temperature of the bulk amorphous phase and lower than the melting temperature. Extrapolation of this relationship for crystals formed at 140 °C towards the heat capacity of fully solid PLLA yields a value of 104.5±6 J g-1 when melting occurs at 180-200 °C. The analysis relies on a two-phase structure, that is, absence of a vitrified rigid amorphous fraction (RAF) at the temperature of analysis the solid fraction (90 °C). Formation and vitrification of an RAF are suppressed by avoiding continuation of primary crystallization and secondary crystallization during cooling the system from the crystallization temperature of 140 °C to 90 °C, making use of the high cooling capacity of FSC. Small-angle X-ray scattering (SAXS) confirmed thickening of initially grown lamellae which only is possible if these lamellae are not surrounded by a glassy RAF. Linear crystallinity values obtained by SAXS and calorimetrically determined enthalpy-based crystallinities agree close to each other.


Assuntos
Ácido Láctico , Calorimetria , Varredura Diferencial de Calorimetria , Ácido Láctico/química , Espalhamento a Baixo Ângulo , Difração de Raios X
11.
Adv Exp Med Biol ; 1371: 1-10, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33963527

RESUMO

Carotenoids are ancient pigment molecules that, when associated with proteins, have a tremendous range of functional properties. Unlike most protein prosthetic groups, there are no recognizable primary structure motifs that predict carotenoid binding, hence the structural details of their amino acid interactions in proteins must be worked out empirically. Here we describe our recent efforts to combine complementary biophysical methods to elucidate the precise details of protein-carotenoid interactions in the Orange Carotenoid Protein and its evolutionary antecedents, the Helical Carotenoid Proteins (HCPs), CTD-like carotenoid proteins (CCPs).


Assuntos
Cianobactérias , Proteínas de Bactérias/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Cianobactérias/metabolismo
12.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36613842

RESUMO

The Nipah and Hendra viruses (NiV and HeV) are biosafety level 4 human pathogens classified within the Henipavirus genus of the Paramyxoviridae family. In both NiV and HeV, the gene encoding the Phosphoprotein (P protein), an essential polymerase cofactor, also encodes the V and W proteins. These three proteins, which share an intrinsically disordered N-terminal domain (NTD) and have unique C-terminal domains (CTD), are all known to counteract the host innate immune response, with V and W acting by either counteracting or inhibiting Interferon (IFN) signaling. Recently, the ability of a short region within the shared NTD (i.e., PNT3) to form amyloid-like structures was reported. Here, we evaluated the relevance of each of three contiguous tyrosine residues located in a previously identified amyloidogenic motif (EYYY) within HeV PNT3 to the fibrillation process. Our results indicate that removal of a single tyrosine in this motif significantly decreases the ability to form fibrils independently of position, mainly affecting the elongation phase. In addition, we show that the C-terminal half of PNT3 has an inhibitory effect on fibril formation that may act as a molecular shield and could thus be a key domain in the regulation of PNT3 fibrillation. Finally, the kinetics of fibril formation for the two PNT3 variants with the highest and the lowest fibrillation propensity were studied by Taylor Dispersion Analysis (TDA). The results herein presented shed light onto the molecular mechanisms involved in fibril formation.


Assuntos
Vírus Hendra , Infecções por Henipavirus , Vírus Nipah , Humanos , Vírus Hendra/genética , Interferons/metabolismo , Imunidade Inata
13.
Molecules ; 27(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35164252

RESUMO

Solvents that stabilize protein structures can improve and expand their biochemical applications, particularly with the growing interest in biocatalytic-based processes. Aiming to select novel solvents for protein stabilization, we explored the effect of alkylammonium nitrate protic ionic liquids (PILs)-water mixtures with increasing cation alkyl chain length on lysozyme conformational stability. Four PILs were studied, that is, ethylammonium nitrate (EAN), butylammonium nitrate (BAN), hexylammonium nitrate (HAN), and octylammonium nitrate (OAN). The surface tension, viscosity, and density of PIL-water mixtures at low to high concentrations were firstly determined, which showed that an increasing cation alkyl chain length caused a decrease in the surface tension and density as well as an increase in viscosity for all PIL solutions. Small-angle X-ray scattering (SAXS) was used to investigate the liquid nanostructure of the PIL solutions, as well as the overall size, conformational flexibility and changes to lysozyme structure. The concentrated PILs with longer alkyl chain lengths, i.e., over 10 mol% butyl-, 5 mol% hexyl- and 1 mol% octylammonium cations, possessed liquid nanostructures. This detrimentally interfered with solvent subtraction, and the more structured PIL solutions prevented quantitative SAXS analysis of lysozyme structure. The radius of gyration (Rg) of lysozyme in the less structured aqueous PIL solutions showed little change with up to 10 mol% of PIL. Kratky plots, SREFLEX models, and FTIR data showed that the protein conformation was maintained at a low PIL concentration of 1 mol% and lower when compared with the buffer solution. However, 50 mol% EAN and 5 mol% HAN significantly increased the Rg of lysozyme, indicating unfolding and aggregation of lysozyme. The hydrophobic interaction and liquid nanostructure resulting from the increased cation alkyl chain length in HAN likely becomes critical. The impact of HAN and OAN, particularly at high concentrations, on lysozyme structure was further revealed by FTIR. This work highlights the negative effect of a long alkyl chain length and high concentration of PILs on lysozyme structural stability.


Assuntos
Líquidos Iônicos/química , Muramidase/química , Cátions/química , Interações Hidrofóbicas e Hidrofílicas , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
14.
J Biol Chem ; 295(49): 16713-16731, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32978259

RESUMO

The actin cytoskeleton is of profound importance to cell shape, division, and intracellular force generation. Profilins bind to globular (G-)actin and regulate actin filament formation. Although profilins are well-established actin regulators, the distinct roles of the dominant profilin, profilin 1 (PFN1), versus the less abundant profilin 2 (PFN2) remain enigmatic. In this study, we use interaction proteomics to discover that PFN2 is an interaction partner of the actin N-terminal acetyltransferase NAA80, and further confirm this by analytical ultracentrifugation. Enzyme assays with NAA80 and different profilins demonstrate that PFN2 binding specifically increases the intrinsic catalytic activity of NAA80. NAA80 binds PFN2 through a proline-rich loop, deletion of which abrogates PFN2 binding. Small-angle X-ray scattering shows that NAA80, actin, and PFN2 form a ternary complex and that NAA80 has partly disordered regions in the N-terminus and the proline-rich loop, the latter of which is partly ordered upon PFN2 binding. Furthermore, binding of PFN2 to NAA80 via the proline-rich loop promotes binding between the globular domains of actin and NAA80, and thus acetylation of actin. However, the majority of cellular NAA80 is stably bound to PFN2 and not to actin, and we propose that this complex acetylates G-actin before it is incorporated into filaments. In conclusion, we reveal a functionally specific role of PFN2 as a stable interactor and regulator of the actin N-terminal acetyltransferase NAA80, and establish the modus operandi for NAA80-mediated actin N-terminal acetylation, a modification with a major impact on cytoskeletal dynamics.


Assuntos
Acetiltransferases/metabolismo , Actinas/metabolismo , Profilinas/metabolismo , Acetilação , Acetiltransferases/química , Acetiltransferases/genética , Citoesqueleto de Actina/metabolismo , Actinas/química , Animais , Biocatálise , Linhagem Celular , Humanos , Profilinas/química , Profilinas/deficiência , Profilinas/genética , Ligação Proteica , Domínios Proteicos , Estrutura Quaternária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espalhamento a Baixo Ângulo , Ultracentrifugação , Difração de Raios X
15.
J Biol Chem ; 295(19): 6689-6699, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32229583

RESUMO

The cell surfaces of many bacteria carry filamentous polypeptides termed adhesins that enable binding to both biotic and abiotic surfaces. Surface adherence is facilitated by the exquisite selectivity of the adhesins for their cognate ligands or receptors and is a key step in niche or host colonization and pathogenicity. Streptococcus gordonii is a primary colonizer of the human oral cavity and an opportunistic pathogen, as well as a leading cause of infective endocarditis in humans. The fibrillar adhesin CshA is an important determinant of S. gordonii adherence, forming peritrichous fibrils on its surface that bind host cells and other microorganisms. CshA possesses a distinctive multidomain architecture comprising an N-terminal target-binding region fused to 17 repeat domains (RDs) that are each ∼100 amino acids long. Here, using structural and biophysical methods, we demonstrate that the intact CshA repeat region (CshA_RD1-17, domains 1-17) forms an extended polymeric monomer in solution. We recombinantly produced a subset of CshA RDs and found that they differ in stability and unfolding behavior. The NMR structure of CshA_RD13 revealed a hitherto unreported all ß-fold, flanked by disordered interdomain linkers. These findings, in tandem with complementary hydrodynamic studies of CshA_RD1-17, indicate that this polypeptide possesses a highly unusual dynamic transitory structure characterized by alternating regions of order and disorder. This architecture provides flexibility for the adhesive tip of the CshA fibril to maintain bacterial attachment that withstands shear forces within the human host. It may also help mitigate deleterious folding events between neighboring RDs that share significant structural identity without compromising mechanical stability.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana/química , Multimerização Proteica , Sequência de Aminoácidos , Modelos Moleculares , Domínios Proteicos , Estrutura Quaternária de Proteína , Sequências Repetitivas de Aminoácidos
16.
J Biol Chem ; 295(10): 3301-3315, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31949045

RESUMO

In environments where glucose is limited, some pathogenic bacteria metabolize host-derived sialic acid as a nutrient source. N-Acetylmannosamine kinase (NanK) is the second enzyme of the bacterial sialic acid import and degradation pathway and adds phosphate to N-acetylmannosamine using ATP to prime the molecule for future pathway reactions. Sequence alignments reveal that Gram-positive NanK enzymes belong to the Repressor, ORF, Kinase (ROK) family, but many lack the canonical Zn-binding motif expected for this function, and the sugar-binding EXGH motif is altered to EXGY. As a result, it is unclear how they perform this important reaction. Here, we study the Staphylococcus aureus NanK (SaNanK), which is the first characterization of a Gram-positive NanK. We report the kinetic activity of SaNanK along with the ligand-free, N-acetylmannosamine-bound and substrate analog GlcNAc-bound crystal structures (2.33, 2.20, and 2.20 Å resolution, respectively). These demonstrate, in combination with small-angle X-ray scattering, that SaNanK is a dimer that adopts a closed conformation upon substrate binding. Analysis of the EXGY motif reveals that the tyrosine binds to the N-acetyl group to select for the "boat" conformation of N-acetylmannosamine. Moreover, SaNanK has a stacked arginine pair coordinated by negative residues critical for thermal stability and catalysis. These combined elements serve to constrain the active site and orient the substrate in lieu of Zn binding, representing a significant departure from canonical NanK binding. This characterization provides insight into differences in the ROK family and highlights a novel area for antimicrobial discovery to fight Gram-positive and S. aureus infections.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Staphylococcus aureus/enzimologia , Motivos de Aminoácidos , Proteínas de Bactérias/química , Sítios de Ligação , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Hexosaminas/química , Hexosaminas/metabolismo , Cinética , Fosfotransferases (Aceptor do Grupo Álcool)/química , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , Zinco/química , Zinco/metabolismo
17.
J Biol Chem ; 295(36): 12755-12771, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32719005

RESUMO

Collagen VI is a ubiquitous heterotrimeric protein of the extracellular matrix (ECM) that plays an essential role in the proper maintenance of skeletal muscle. Mutations in collagen VI lead to a spectrum of congenital myopathies, from the mild Bethlem myopathy to the severe Ullrich congenital muscular dystrophy. Collagen VI contains only a short triple helix and consists primarily of von Willebrand factor type A (VWA) domains, protein-protein interaction modules found in a range of ECM proteins. Disease-causing mutations occur commonly in the VWA domains, and the second VWA domain of the α3 chain, the N2 domain, harbors several such mutations. Here, we investigate structure-function relationships of the N2 mutations to shed light on their possible myopathy mechanisms. We determined the X-ray crystal structure of N2, combined with monitoring secretion efficiency in cell culture of selected N2 single-domain mutants, finding that mutations located within the central core of the domain severely affect secretion efficiency. In longer α3 chain constructs, spanning N6-N3, small-angle X-ray scattering demonstrates that the tandem VWA array has a modular architecture and samples multiple conformations in solution. Single-particle EM confirmed the presence of multiple conformations. Structural adaptability appears intrinsic to the VWA domain region of collagen VI α3 and has implications for binding interactions and modulating stiffness within the ECM.


Assuntos
Colágeno Tipo VI/química , Doenças Musculares , Mutação , Colágeno Tipo VI/genética , Cristalografia por Raios X , Humanos , Domínios Proteicos
18.
J Biol Chem ; 295(47): 15923-15932, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-32913117

RESUMO

Despite the threat to human health posed by some single-stranded RNA viruses, little is understood about their assembly. The goal of this work is to introduce a new tool for watching an RNA genome direct its own packaging and encapsidation by proteins. Contrast variation small-angle X-ray scattering (CV-SAXS) is a powerful tool with the potential to monitor the changing structure of a viral RNA through this assembly process. The proteins, though present, do not contribute to the measured signal. As a first step in assessing the feasibility of viral genome studies, the structure of encapsidated MS2 RNA was exclusively detected with CV-SAXS and compared with a structure derived from asymmetric cryo-EM reconstructions. Additional comparisons with free RNA highlight the significant structural rearrangements induced by capsid proteins and invite the application of time-resolved CV-SAXS to reveal interactions that result in efficient viral assembly.


Assuntos
Genoma Viral , Levivirus/química , RNA Viral/química , Espalhamento a Baixo Ângulo , Difração de Raios X
19.
J Biol Chem ; 295(48): 16342-16358, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-32928961

RESUMO

The human complement Factor H-related 5 protein (FHR5) antagonizes the main circulating complement regulator Factor H, resulting in the deregulation of complement activation. FHR5 normally contains nine short complement regulator (SCR) domains, but a FHR5 mutant has been identified with a duplicated N-terminal SCR-1/2 domain pair that causes CFHR5 nephropathy. To understand how this duplication causes disease, we characterized the solution structure of native FHR5 by analytical ultracentrifugation and small-angle X-ray scattering. Sedimentation velocity and X-ray scattering indicated that FHR5 was dimeric, with a radius of gyration (Rg ) of 5.5 ± 0.2 nm and a maximum protein length of 20 nm for its 18 domains. This result indicated that FHR5 was even more compact than the main regulator Factor H, which showed an overall length of 26-29 nm for its 20 SCR domains. Atomistic modeling for FHR5 generated a library of 250,000 physically realistic trial arrangements of SCR domains for scattering curve fits. Only compact domain structures in this library fit well to the scattering data, and these structures readily accommodated the extra SCR-1/2 domain pair present in CFHR5 nephropathy. This model indicated that mutant FHR5 can form oligomers that possess additional binding sites for C3b in FHR5. We conclude that the deregulation of complement regulation by the FHR5 mutant can be rationalized by the enhanced binding of FHR5 oligomers to C3b deposited on host cell surfaces. Our FHR5 structures thus explained key features of the mechanism and pathology of CFHR5 nephropathy.


Assuntos
Proteínas do Sistema Complemento/química , Nefropatias , Mutação , Multimerização Proteica , Complemento C3b/química , Complemento C3b/genética , Complemento C3b/metabolismo , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Células HEK293 , Humanos , Domínios Proteicos
20.
J Biol Chem ; 295(16): 5278-5291, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32144206

RESUMO

Inter-α-inhibitor is a proteoglycan essential for mammalian reproduction and also plays a less well-characterized role in inflammation. It comprises two homologous "heavy chains" (HC1 and HC2) covalently attached to chondroitin sulfate on the bikunin core protein. Before ovulation, HCs are transferred onto the polysaccharide hyaluronan (HA) to form covalent HC·HA complexes, thereby stabilizing an extracellular matrix around the oocyte required for fertilization. Additionally, such complexes form during inflammatory processes and mediate leukocyte adhesion in the synovial fluids of arthritis patients and protect against sepsis. Here using X-ray crystallography, we show that human HC1 has a structure similar to integrin ß-chains, with a von Willebrand factor A domain containing a functional metal ion-dependent adhesion site (MIDAS) and an associated hybrid domain. A comparison of the WT protein and a variant with an impaired MIDAS (but otherwise structurally identical) by small-angle X-ray scattering and analytical ultracentrifugation revealed that HC1 self-associates in a cation-dependent manner, providing a mechanism for HC·HA cross-linking and matrix stabilization. Surprisingly, unlike integrins, HC1 interacted with RGD-containing ligands, such as fibronectin, vitronectin, and the latency-associated peptides of transforming growth factor ß, in a MIDAS/cation-independent manner. However, HC1 utilizes its MIDAS motif to bind to and inhibit the cleavage of complement C3, and small-angle X-ray scattering-based modeling indicates that this occurs through the inhibition of the alternative pathway C3 convertase. These findings provide detailed structural and functional insights into HC1 as a regulator of innate immunity and further elucidate the role of HC·HA complexes in inflammation and ovulation.


Assuntos
alfa-Globulinas/química , Matriz Extracelular/metabolismo , Imunidade Inata , Simulação de Dinâmica Molecular , Ovulação , Humanos , Cadeias beta de Integrinas/química , Domínios Proteicos , Fator de von Willebrand/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA