RESUMO
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system (CNS). Small non-coding RNAs (sncRNAs) and, in particular, microRNAs (miRNAs) have frequently been associated with MS. Here, we performed a comprehensive analysis of all classes of sncRNAs in matching samples of peripheral blood mononuclear cells (PBMCs), plasma, cerebrospinal fluid (CSF) cells, and cell-free CSF from relapsing-remitting (RRMS, n = 12 in relapse and n = 11 in remission) patients, secondary progressive (SPMS, n = 6) MS patients, and noninflammatory and inflammatory neurological disease controls (NINDC, n = 11; INDC, n = 5). We show widespread changes in miRNAs and sncRNA-derived fragments of small nuclear, nucleolar, and transfer RNAs. In CSF cells, 133 out of 133 and 115 out of 117 differentially expressed sncRNAs were increased in RRMS relapse compared to remission and RRMS compared to NINDC, respectively. In contrast, 65 out of 67 differentially expressed PBMC sncRNAs were decreased in RRMS compared to NINDC. The striking contrast between the periphery and CNS suggests that sncRNA-mediated mechanisms, including alternative splicing, RNA degradation, and mRNA translation, regulate the transcriptome of pathogenic cells primarily in the CNS target organ.
Assuntos
Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Transcriptoma/genética , Adulto , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Humanos , Leucócitos/metabolismo , Leucócitos Mononucleares/metabolismo , Masculino , MicroRNAs/sangue , MicroRNAs/líquido cefalorraquidiano , MicroRNAs/genética , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Esclerose Múltipla Crônica Progressiva/genética , Esclerose Múltipla Recidivante-Remitente/genética , Recidiva Local de Neoplasia/metabolismo , Pequeno RNA não Traduzido/sangue , Pequeno RNA não Traduzido/líquido cefalorraquidiano , Pequeno RNA não Traduzido/genéticaRESUMO
Vibrio alginolyticus is an important foodborne pathogen that can infect both humans and marine animals and cause massive economic losses in aquaculture. Small noncoding RNAs (sRNAs) are emerging posttranscriptional regulators that affect bacterial physiology and pathological processes. In the present work, a new cell density-dependent sRNA, Qrr4, was characterized in V. alginolyticus based on a previously reported RNA-seq analysis and bioinformatics approach. The effects of Qrr4 actions on the physiology, virulence, and metabolism of V. alginolyticus were comprehensively investigated based on molecular biology and metabolomics approaches. The results showed that qrr4 deletion markedly inhibited growth, motility and extracellular protease activities. Additionally, nontargeted metabolism and lipidomics analyses revealed that qrr4 deletion induced significant disturbance of multiple metabolic pathways. The key metabolic remodelling that occurred in response to qrr4 deletion was found to involve phospholipid, nucleotide, carbohydrate and amino acid metabolic pathways, providing novel clues about a potential mechanism via which mutation of qrr4 could interfere with cellular energy homeostasis, modulate membrane phospholipid composition and inhibit nucleic acid and protein syntheses to regulate the motility, growth and virulence characteristics of V. alginolyticus. Overall, this study provides a comprehensive understanding of the regulatory roles of the new cell density-dependent sRNA Qrr4 in V. alginolyticus. KEY POINTS: ⢠A novel cell density-dependent sRNA, Qrr4, was cloned in V. alginolyticus. â¢Qrr4 regulated growth and virulence factors of V. alginolyticus. ⢠Phospholipid, nucleotide and energy metabolisms were modulated obviously by Qrr4.
Assuntos
Pequeno RNA não Traduzido , Vibrio alginolyticus , Animais , Humanos , Vibrio alginolyticus/genética , Virulência/genética , Fatores de Virulência/metabolismo , Nucleotídeos/metabolismo , Pequeno RNA não Traduzido/genética , Proteínas de Bactérias/genéticaRESUMO
BACKGROUND: B chromosomes are extra elements found in several eukaryote species. Usually, they do not express a phenotype in the host. However, advances in bioinformatics over the last decades have allowed us to describe several genes and molecular functions related to B chromosomes. These advances enable investigations of the relationship between the B chromosome and the host to understand how this element has been preserved in genomes. However, considering that transposable elements (TEs) are highly abundant in this supernumerary chromosome, there is a lack of knowledge concerning the dynamics of TE control in B-carrying cells. Thus, the present study characterized PIWI-interacting RNA (piRNA) clusters and pathways responsible for silencing the mobilization of TEs in gonads of the cichlid fish Astatotilapia latifasciata carrying the B chromosome. RESULTS: Through small RNA-seq and genome assembly, we predicted and annotated piRNA clusters in the A. latifasciata genome for the first time. We observed that these clusters had biased expression related to sex and the presence of the B chromosome. Furthermore, three piRNA clusters, named curupira, were identified in the B chromosome. Two of them were expressed exclusively in gonads of samples with the B chromosome. The composition of these curupira sequences was derived from LTR, LINE, and DNA elements, representing old and recent transposition events in the A. latifasciata genome and the B chromosome. The presence of the B chromosome also affected the expression of piRNA pathway genes. The mitochondrial cardiolipin hydrolase-like (pld6) gene is present in the B chromosome, as previously reported, and an increase in its expression was detected in gonads with the B chromosome. CONCLUSIONS: Due to the high abundance of TEs in the B chromosome, it was possible to investigate the origin of piRNA from these jumping genes. We hypothesize that the B chromosome has evolved its own genomic guardians to prevent uncontrolled TE mobilization. Furthermore, we also detected an expression bias in the presence of the B chromosome over A. latifasciata piRNA clusters and pathway genes.
Assuntos
Ciclídeos , Elementos de DNA Transponíveis , Animais , Cardiolipinas , Cromossomos/metabolismo , Ciclídeos/genética , Elementos de DNA Transponíveis/genética , Hidrolases/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismoRESUMO
Fragments of mature tRNAs have long been considered as mere degradation products without physiological function. However, recent reports show that tRNA-derived small RNAs (tsRNAs) play prominent roles in diverse cellular processes across a wide spectrum of species. Contrasting the situation in other small RNA pathways the mechanisms behind these effects appear more diverse, more complex, and are generally less well understood. In addition, surprisingly little is known about the expression profiles of tsRNAs across different tissues and species. Here, we provide an initial overview of tsRNA expression in different species and tissues, revealing very high levels of 5' tRNA halves (5' tRHs) particularly in the primate hippocampus. We further modulated the regulation capacity of selected 5' tRHs in human cells by transfecting synthetic tsRNA mimics ("overexpression") or antisense-RNAs ("inhibition") and identified differentially expressed transcripts based on RNA-seq. We then used a novel k-mer mapping approach to dissect the underlying targeting rules, suggesting that 5' tRHs silence genes in a sequence-specific manner, while the most efficient target sites align to the mid-region of the 5' tRH and are located within the CDS or 3' UTR of the target. This amends previous observations that tsRNAs guide Argonaute proteins to silence their targets via a miRNA-like 5' seed match and suggests a yet unknown mechanism of regulation. Finally, our data suggest that some 5' tRHs that are also able to sequence-specifically stabilize mRNAs as up-regulated mRNAs are also significantly enriched for 5' tRH target sites.
Assuntos
Regulação da Expressão Gênica , Hipocampo/metabolismo , Pequeno RNA não Traduzido/metabolismo , RNA de Transferência/química , Animais , Células HEK293 , Humanos , Camundongos , MicroRNAs/metabolismo , Neurogênese/genética , Primatas/genética , RNA Interferente Pequeno/metabolismo , Ratos , Análise de Sequência de RNARESUMO
PURPOSE OF REVIEW: Small non-coding RNAs regulate gene expression and are highly implicated in heart failure. Recently, an additional level of post-transcriptional regulation has been identified, referred to as the epitranscriptome, which encompasses the body of post-transcriptional modifications that are placed on RNA molecules. In this review, we summarize the current knowledge on the small non-coding RNA epitranscriptome in heart failure. RECENT FINDINGS: With the rise of new methods to study RNA modifications, epitranscriptome research has begun to take flight. Over the past 3 years, the number of publications on the epitranscriptome in heart failure has significantly increased, and we expect many more highly relevant publications to come out over the next few years. Currently, at least six modifications on small non-coding RNAs have been investigated in heart failure-relevant studies, namely N6-adenosine, N5-cytosine and N7-guanosine methylation, 2'-O-ribose-methylation, adenosine-to-inosine editing, and isomiRs. Their potential role in heart failure is discussed.
Assuntos
Insuficiência Cardíaca , Pequeno RNA não Traduzido , Adenosina/genética , Citosina , Epigênese Genética , Guanosina , Insuficiência Cardíaca/genética , Humanos , Inosina , Pequeno RNA não Traduzido/genética , Ribose , TranscriptomaRESUMO
BACKGROUND: B chromosomes (Bs) are extra elements observed in diverse eukaryotes, including animals, plants and fungi. Although Bs were first identified a century ago and have been studied in hundreds of species, their biology is still enigmatic. Recent advances in omics and big data technologies are revolutionizing the B biology field. These advances allow analyses of DNA, RNA, proteins and the construction of interactive networks for understanding the B composition and behavior in the cell. Several genes have been detected on the B chromosomes, although the interaction of B sequences and the normal genome remains poorly understood. RESULTS: We identified 727 miRNA precursors in the A. latifasciata genome, 66% which were novel predicted sequences that had not been identified before. We were able to report the A. latifasciata-specific miRNAs and common miRNAs identified in other fish species. For the samples carrying the B chromosome (B+), we identified 104 differentially expressed (DE) miRNAs that are down or upregulated compared to samples without B chromosome (B-) (p < 0.05). These miRNAs share common targets in the brain, muscle and gonads. These targets were used to construct a protein-protein-miRNA network showing the high interaction between the targets of differentially expressed miRNAs in the B+ chromosome samples. Among the DE-miRNA targets there are protein-coding genes reported for the B chromosome that are present in the protein-protein-miRNA network. Additionally, Gene Ontology (GO) terms related to nuclear matrix organization and response to stimulus are exclusive to DE miRNA targets of B+ samples. CONCLUSIONS: This study is the first to report the connection of B chromosomes and miRNAs in a vertebrate species. We observed that the B chromosome impacts the miRNAs expression in several tissues and these miRNAs target several mRNAs involved with important biological processes.
Assuntos
Ciclídeos , MicroRNAs , Animais , Cromossomos/genética , Ciclídeos/genética , Perfilação da Expressão Gênica , Ontologia Genética , Genoma , MicroRNAs/genéticaRESUMO
Allopolyploidy, combining interspecific hybridization with whole genome duplication, has had significant impact on plant evolution. Its evolutionary success is related to the rapid and profound genome reorganizations that allow neoallopolyploids to form and adapt. Nevertheless, how neoallopolyploid genomes adapt to regulate their expression remains poorly understood. The hypothesis of a major role for small noncoding RNAs (sRNAs) in mediating the transcriptional response of neoallopolyploid genomes has progressively emerged. Generally, 21-nt sRNAs mediate posttranscriptional gene silencing by mRNA cleavage, whereas 24-nt sRNAs repress transcription (transcriptional gene silencing) through epigenetic modifications. Here, we characterize the global response of sRNAs to allopolyploidy in Brassica, using three independently resynthesized Brassica napus allotetraploids originating from crosses between diploid Brassica oleracea and Brassica rapa accessions, surveyed at two different generations in comparison with their diploid progenitors. Our results suggest an immediate but transient response of specific sRNA populations to allopolyploidy. These sRNA populations mainly target noncoding components of the genome but also target the transcriptional regulation of genes involved in response to stresses and in metabolism; this suggests a broad role in adapting to allopolyploidy. We finally identify the early accumulation of both 21- and 24-nt sRNAs involved in regulating the same targets, supporting a posttranscriptional gene silencing to transcriptional gene silencing shift at the first stages of the neoallopolyploid formation. We propose that reorganization of sRNA production is an early response to allopolyploidy in order to control the transcriptional reactivation of various noncoding elements and stress-related genes, thus ensuring genome stability during the first steps of neoallopolyploid formation.
Assuntos
Brassica napus/genética , Especiação Genética , Pequeno RNA não Traduzido/metabolismo , Tetraploidia , Brassica napus/metabolismo , Elementos de DNA TransponíveisRESUMO
Bacterial outer membrane vesicles (OMVs) play a vital role in the mechanism of host-pathogen communication, while emerging evidence suggests that OMVs regulate host immune responses through differentially packaged small noncoding RNAs (sncRNAs) to target host mRNA function. Therefore, we identified differentially packaged sncRNAs in Helicobacter pylori OMVs and showed transfer of OMV sncRNAs to human gastric adenocarcinoma cells in this study. Our data revealed that sncRNAs (sR-2509025 and sR-989262) were enriched in OMVs, and reduced lipopolysaccharide or OMV-induced interleukin 8 (IL-8) secretion by cultured AGS cells. Collectively, these findings are consistent with the hypothesis that sncRNAs in H. pylori OMVs play a novel role in the mechanism of host-pathogen interaction, whereby H. pylori evades the host immune response.
Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Helicobacter pylori/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interleucina-8/imunologia , Pequeno RNA não Traduzido/imunologia , Adenocarcinoma , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Humanos , Evasão da Resposta Imune , Transporte Proteico , Neoplasias GástricasRESUMO
tRNA-derived fragments (tRFs) have been defined as a novel class of small noncoding RNAs. tRFs have been reported to be deregulated in cancer, but their biologic function remains to be fully understood. We have identified a new tRF (named tRF3E), derived from mature tRNAGlu, that is specifically expressed in healthy mammary glands but not in breast cancer (BC). Consistently, tRF3E levels significantly decrease in the blood of patients with epidermal growth factor receptor 2 (HER2)-positive BC reflecting tumor status (control > early cancer > metastatic cancer). tRF3E down-regulation was recapitulated in Δ16HER2 transgenic mice, representing a BC preclinical model. Pulldown assays, used to search for proteins capable to selectively bind tRF3E, have shown that this tRF specifically interacts with nucleolin (NCL), an RNA-binding protein overexpressed in BC and able to repress the translation of p53 mRNA. The binding properties of NCL-tRF3E complex, predicted in silico and analyzed by EMSA assays, are congruent with a competitive displacement of p53 mRNA by tRF3E, leading to an increased p53 expression and consequently to a modulation of cancer cell growth. Here, we provide evidence that tRF3E plays an important role in the pathogenesis of BC displaying tumor-suppressor functions through a NCL-mediated mechanism.-Falconi, M., Giangrossi, M., Elexpuru Zabaleta, M., Wang, J., Gambini, V., Tilio, M., Bencardino, D., Occhipinti, S., Belletti, B., Laudadio, E., Galeazzi, R., Marchini, C., Amici, A. A novel 3'-tRNAGlu-derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin.
Assuntos
Neoplasias da Mama/metabolismo , Fosfoproteínas/metabolismo , RNA de Transferência de Ácido Glutâmico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Western Blotting , Neoplasias da Mama/genética , Ensaio de Desvio de Mobilidade Eletroforética , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Fosfoproteínas/genética , RNA de Transferência de Ácido Glutâmico/genética , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , NucleolinaRESUMO
CsrA, an RNA-binding protein, binds to target transcripts and alters their translation or stability. In Erwinia amylovora, CsrA positively regulates the expression of type III secretion system (T3SS), exopolysaccharide amylovoran, and motility. In this study, the global effect of CsrA and its noncoding small RNA (ncsRNA) csrB in E. amylovora was determined by RNA-seq, and potential molecular mechanisms of CsrA-dependent virulence regulation were examined. Transcriptomic analyses under the T3SS-inducing condition revealed that mutation in the csrA gene led to differential expression of more than 20% of genes in the genome. Among them, T3SS genes and those required for cell growth and viability were significantly downregulated. On the other hand, the csrB mutant exhibited significant upregulation of most major virulence genes, suggesting an antagonistic effect of csrB on CsrA targets. Direct interaction between CsrA protein and csrB was further confirmed through the RNA electrophoretic mobility shift assay (REMSA). However, no direct interaction between CsrA and hrpL and hrpS transcripts was detected, suggesting that HrpL and HrpS are not targets of CsrA, whereas three CsrA targets (relA, rcsB, and flhD) were identified and confirmed by REMSA, site-directed mutagenesis, and LacZ reporter gene assays. These findings might partially explain how CsrA positively controls E. amylovora virulence by targeting major regulators at the posttranscriptional level.
Assuntos
Proteínas de Bactérias , Erwinia amylovora , Regulação Bacteriana da Expressão Gênica , Proteínas de Ligação a RNA/metabolismo , Virulência , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Erwinia amylovora/genética , Erwinia amylovora/patogenicidade , Regulação Bacteriana da Expressão Gênica/genética , Mutação , Proteínas de Ligação a RNA/genética , Transcriptoma , Virulência/genéticaRESUMO
Although it is believed that mammalian sperm carry small noncoding RNAs (sncRNAs) into oocytes during fertilization, it remains unknown whether these sperm-borne sncRNAs truly have any function during fertilization and preimplantation embryonic development. Germline-specific Dicer and Drosha conditional knockout (cKO) mice produce gametes (i.e. sperm and oocytes) partially deficient in miRNAs and/or endo-siRNAs, thus providing a unique opportunity for testing whether normal sperm (paternal) or oocyte (maternal) miRNA and endo-siRNA contents are required for fertilization and preimplantation development. Using the outcome of intracytoplasmic sperm injection (ICSI) as a readout, we found that sperm with altered miRNA and endo-siRNA profiles could fertilize wild-type (WT) eggs, but embryos derived from these partially sncRNA-deficient sperm displayed a significant reduction in developmental potential, which could be rescued by injecting WT sperm-derived total or small RNAs into ICSI embryos. Disrupted maternal transcript turnover and failure in early zygotic gene activation appeared to associate with the aberrant miRNA profiles in Dicer and Drosha cKO spermatozoa. Overall, our data support a crucial function of paternal miRNAs and/or endo-siRNAs in the control of the transcriptomic homeostasis in fertilized eggs, zygotes and two-cell embryos. Given that supplementation of sperm RNAs enhances both the developmental potential of preimplantation embryos and the live birth rate, it might represent a novel means to improve the success rate of assisted reproductive technologies in fertility clinics.
Assuntos
Desenvolvimento Embrionário , Fertilização , MicroRNAs/genética , RNA Interferente Pequeno/genética , Ribonuclease III/metabolismo , Espermatozoides/metabolismo , Animais , Animais Recém-Nascidos , Desenvolvimento Embrionário/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Lisina/metabolismo , Masculino , Camundongos Knockout , MicroRNAs/metabolismo , Oócitos/metabolismo , Óvulo/metabolismo , Gravidez , RNA Interferente Pequeno/metabolismo , Análise de Sequência de RNA , Injeções de Esperma Intracitoplásmicas , Espermatogênese/genéticaRESUMO
The majority of Drosophila genes are expressed in a temperature-dependent manner, but the way in which small RNAs may contribute to this effect is completely unknown as we currently lack an idea of how small RNA transcriptomes change as a function of temperature. Applying high-throughput sequencing techniques complemented by quantitative real-time PCR experiments, we demonstrate that altered ambient temperature induces drastic but reversible changes in sequence composition and total abundance of both miRNA and piRNA populations. Further, mRNA sequencing reveals that the expression of miRNAs and their predicted target transcripts correlates inversely, suggesting that temperature-responsive miRNAs drive adaptation to different ambient temperatures on the transcriptome level. Finally, we demonstrate that shifts in temperature affect both primary and secondary piRNA pools, and the observed aberrations are consistent with altered expression levels of the involved Piwi-pathway factors. We further reason that enhanced ping-pong processing at 29°C is driven by dissolved RNA secondary structures at higher temperatures, uncovering target sites that are not accessible at low temperatures. Together, our results show that small RNAs are an important part of epigenetic regulatory mechanisms that ensure homeostasis and adaptation under fluctuating environmental conditions.
Assuntos
Adaptação Biológica/genética , Drosophila/genética , MicroRNAs/genética , Temperatura , Animais , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , RNA Interferente Pequeno/genética , TranscriptomaRESUMO
Because RNA can be a carrier of genetic information and a biocatalyst, there is a consensus that it emerged before DNA and proteins, which eventually assumed these roles and relegated RNA to intermediate functions. If such a scenario--the so-called RNA world--existed, we might hope to find its relics in our present world. The properties of viroids that make them candidates for being survivors of the RNA world include those expected for primitive RNA replicons: (a) small size imposed by error-prone replication, (b) high G + C content to increase replication fidelity, (c) circular structure for assuring complete replication without genomic tags, (d) structural periodicity for modular assembly into enlarged genomes, (e) lack of protein-coding ability consistent with a ribosome-free habitat, and (f) replication mediated in some by ribozymes, the fingerprint of the RNA world. With the advent of DNA and proteins, those protoviroids lost some abilities and became the plant parasites we now know.
Assuntos
Viroides/fisiologia , Replicação Viral , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Viroides/química , Viroides/classificação , Viroides/genéticaRESUMO
Human dental pulp stem cells (DPSCs) are oral mesenchymal stem cells with potential to differentiate into various cell types. Recent studies of DPSCs have focused on microRNAs (miRNAs), a class of small noncoding RNAs that play crucial roles in regulating DPSC phenotypes. In the current study, the expression of miR-140-5p was significantly decreased during lipopolysaccharide (LPS)-mediated differentiation of DPSCs in vitro. Overexpression of miR-140-5p enhanced proliferation of DPSCs and inhibited DPSC differentiation, whereas suppression of miR-140-5p produced the opposite effect. Moreover, the expression of toll-like receptor 4 (TLR-4), a critical regulator of DPSCs, was negatively correlated with the levels of miR-140-5p. A luciferase reporter analysis confirmed that miR-140-5p could regulate TLR-4 by directly binding to the 3'-untranslated region (3'-UTR) of the TLR4 mRNA. Additionally, we suppressed TLR-4 expression by treating cells with a TLR-4 inhibitor, CLI-095, and demonstrated that the effect of the miR-140-5p inhibitor on DPSC proliferation and differentiation could be partially reversed by blocking TLR-4. Taken together, our data suggest that miR-140-5p is a novel miRNA that regulates DPSC proliferation and differentiation.
Assuntos
Diferenciação Celular/genética , Proliferação de Células/genética , Polpa Dentária/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Odontoblastos/metabolismo , Transdução de Sinais/genética , Receptor 4 Toll-Like/genética , Apoptose , Western Blotting , Ciclo Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Técnicas In Vitro , Lipopolissacarídeos , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Studying the structure, functions, and cell physiology of small RNAs remains important. The 4.5SI and 4.5SH small RNAs, which were among the first to be discovered and sequenced, share several features, i.e., they are both approximately 100 nt in size, are synthesized by RNA polymerase III, and are found only in rodents of several related families. Genes coding for these RNAs are evolutionarily related to short interspersed elements (SINEs). However, the two RNAs differ in nucleotide sequence, half-life in the cell, and the organization of their genes in the genome. Although the 4.5SI and 4.5SH RNAs have been identified more than three decades ago, several aspects of their metabolism in the cell are still poorly understood. The 4.5SI and 4.5SH RNA levels were measured in various organs of three rodent species (mouse, rat, and hamster). Both of the RNAs were found to occur at high levels, which were much the same in different organs in the case of the 4.5SI RNA and varied among organs in the case of the 4.5SH RNA. Both 4.5SI and 4.5SH RNAs demonstrated a predominantly nuclear localization with a detectable presence in the cytoplasm. The copy number per cell for the RNAs was estimated at 0.4-2.4 × 10^(6). A quantitative study for the 4.5SI and 4.5SH RNAs was performed for the first time and resolved a number of contradictions in data from other studies.
Assuntos
RNA Bacteriano/genética , Roedores , Animais , Cricetinae , Dosagem de Genes , Genoma , Camundongos , Ratos , Distribuição TecidualRESUMO
A gene for the Hfq protein is present in the majority of sequenced bacterial genomes. Its characteristic hexameric ring-like core structure is formed by the highly conserved N-terminal regions. In contrast, the C-terminal forms an extension, which varies in length, lacks homology, and is predicted to be unstructured. In Gram-negative bacteria, Hfq facilitates the pairing of sRNAs with their mRNA target and thus affects gene expression, either positively or negatively, and modulates sRNA degradation. In Gram-positive bacteria, its role is still poorly characterized. Numerous sRNAs have been detected in many Gram-positive bacteria, but it is not yet known whether these sRNAs act in association with Hfq. Compared with all other Hfqs, the C. difficile Hfq exhibits an unusual C-terminal sequence with 75% asparagine and glutamine residues, while the N-terminal core part is more conserved. To gain insight into the functionality of the C. difficile Hfq (Cd-Hfq) protein in processes regulated by sRNAs, we have tested the ability of Cd-Hfq to fulfill the functions of the E. coli Hfq (Ec-Hfq) by examining various functions associated with Hfq in both positive and negative controls of gene expression. We found that Cd-Hfq substitutes for most but not all of the tested functions of the Ec-Hfq protein. We also investigated the role of the C-terminal part of the Hfq proteins. We found that the C-terminal part of both Ec-Hfq and Cd-Hfq is not essential but contributes to some functions of both the E. coli and C. difficile chaperons.
Assuntos
Clostridioides difficile/genética , Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo , Biossíntese de Proteínas , RNA Bacteriano/genética , RNA Mensageiro/genética , Clostridioides difficile/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fenótipo , Ligação Proteica , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , beta-Galactosidase/metabolismoRESUMO
The discovery of small noncoding regulatory RNAs (sRNAs) in bacteria has grown tremendously recently, giving new insights into gene regulation. The implementation of computational analysis and RNA sequencing has provided new tools to discover and analyze potential sRNAs. Small regulatory RNAs that act by base-pairing to target mRNAs have been found to be ubiquitous and are the most abundant class of post-transcriptional regulators in bacteria. The majority of sRNA studies has been limited to E. coli and other gram-negative bacteria. However, examples of sRNAs in gram-positive bacteria are still plentiful although the detailed gene regulation mechanisms behind them are not as well understood. Strict virulence control is critical for a pathogen's survival and many sRNAs have been found to be involved in that process. This review outlines the targets and currently known mechanisms of trans-acting sRNAs involved in virulence regulation in various gram-positive pathogens. In addition, their shared characteristics such as CU interaction motifs, the role of Hfq, and involvement in two-component regulators, riboswitches, quorum sensing, or toxin/antitoxin systems are described.
Assuntos
Composição de Bases , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/patogenicidade , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Percepção de Quorum/genética , VirulênciaRESUMO
Influenza A virus (IAV) induces acute respiratory infections in birds and various mammals, including humans, and presents a significant global public health concern, with considerable economic consequences. Recently, researchers have shown keen interest in noncanonical small noncoding RNAs (sncRNAs) as carriers of epigenetic information, including tRNA-derived small RNAs (tsRNAs), rRNA-derived small RNA (rsRNAs), and Y RNA-derived small RNAs (ysRNAs). Particularly, tsRNAs and rsRNAs are detected in diverse species and demonstrate evolutionary conservation. We analyzed sncRNAs sequencing data in the pulmonary tissue of two genetically distinct mouse strains, C57BL/6J and DBA/2J, to explore strain-specific variations of sncRNAs in response to IAV infection. We systematically compiled information on noncanonical sncRNAs in these two strains and investigated the tsRNAs/rsRNAs/ysRNAs profiles influenced by IAV infection. Specifically, four noncanonical sncRNA families, including rsRNA-12S, GtsRNA-Arg-CCT, GtsRNA-Arg-TCT, and GtsRNA-Lys-TTT, exhibited upregulation upon IAV infection. Notably, DBA/2J mice showed earlier systemic differential expression of noncanonical sncRNAs after IAV infection compared to C57BL/6J mice. Additionally, our study revealed a strain-specific biogenesis of MtsRNAs in response to IAV infection. Also, distinct co-expression patterns of MtsRNAs were observed between C57BL/6J and DBA/2J mice, with DBA/2J mice showing broader positive co-expression of MtsRNAs with various sncRNA families compared to C57BL/6J mice. Our study provides a novel insight into noncanonical sncRNAs and their implications in IAV pathology and mouse strain specificity.
RESUMO
BACKGROUND & AIMS: Small noncoding vault RNAs (vtRNAs) are involved in many cell processes important for health and disease, but their pathobiological functions in the intestinal epithelium are underexplored. Here, we investigated the role of human vtRNA1-1 in regulating intestinal epithelial renewal and barrier function. METHODS: Studies were conducted in vtRNA1-1 transgenic (vtRNA1-1Tg) mice, primary enterocytes, and Caco-2 cells. Extracellular vesicles (EVs) were isolated from the serum of shock patients and septic mice. Intestinal organoids (enteroids) were prepared from vtRNA1-1Tg and littermate mice. Mucosal growth was measured by Ki67 immunostaining or BrdU incorporation, and gut permeability was assessed using the FITC-dextran assay. RESULTS: Intestinal tissues recovered from shock patients and septic mice evidenced mucosal injury and gut barrier dysfunction; vtRNA levels were elevated in EVs isolated from their sera. In mice, intestinal epithelial-specific transgenic expression of vtRNA1-1 inhibited mucosal growth, reduced Paneth cell numbers and intercellular junction (IJ) protein expression, and increased gut barrier vulnerability to lipopolysaccharide exposure. Conversely, in vitro silencing of vtRNA1-1 increased IJ protein levels and enhanced epithelial barrier function. Exposing enteroids to vtRNA1-1-rich EVs augmented paracellular permeability. Mechanistically, vtRNA1-1 interacted with CUG-binding protein 1 (CUGBP1) and increased CUGBP1 association with claudin-1 and occludin mRNAs, thereby inhibiting their expression. CONCLUSIONS: These findings indicate that elevated levels of vtRNA1-1 in EVs and mucosal tissues repress intestinal epithelial renewal and barrier function. Notably, this work reveals a novel role for dysregulation of the vtRNA1-1/CUGBP1 axis in the pathogenesis of gut mucosal disruption in critical illness.
RESUMO
Rationale: Angiogenesis expedites tissue impairment in many diseases, including age-related macular degeneration (AMD), a leading cause of irreversible blindness in elderly. A substantial proportion of neovascular AMD patients, characterized by aberrant choroidal neovascularization (CNV), exhibit poor responses or adverse reactions to anti-VEGF therapy. Herein, we aimed to unveil the function of newly identified transfer RNA-derived small RNA, tRF-Glu-CTC, in the pathology of CNV and determine its potential in inhibiting angiogenesis. Methods: Small non-coding RNA sequencing and quantitative polymerase chain reaction were conducted to detect expression pattern of tRF-Glu-CTC in CNV development. Immunofluorescence staining, fundus fluorescein angiography and ex vivo choroidal sprouting assays were employed for the evaluation of tRF-Glu-CTC's function in CNV development. The role of tRF-Glu-CTC in endothelial cells were determined by in vitro endothelial cell proliferation, migration and tube formation assays. Transcriptome sequencing, dual-luciferase reporter assay and in vitro experiments were conducted to investigate downstream mechanism of tRF-Glu-CTC mediated pathology. Results: tRF-Glu-CTC exhibited substantial up-regulation in AMD patients, laser-induced CNV model, and endothelial cells under hypoxia condition, which is a hallmark of CNV. Inhibiting tRF-Glu-CTC reduced angiogenesis and hypoxia stress in the neovascular region without neuroretina toxicity in laser-induced CNV model, showing an anti-angiogenic effect comparable to bevacizumab, while overexpression of tRF-Glu-CTC significantly augmented CNV. Mechanically, under hypoxia condition, angiogenin was involved in the production of tRF-Glu-CTC, which in turn triggered endothelial cell tubulogenesis, migration and promoted the secretion of inflammatory factors via the suppression of vasohibin 1 (VASH1). When downregulating VASH1 expression, the inhibition of tRF-Glu-CTC showed minimal suppression on angiogenesis. Conclusions: This study demonstrated the important role of tRF-Glu-CTC in the progression of angiogenesis. Targeting of tRF-Glu-CTC may be an alternative to current anti-VEGF therapy for CNV in AMD and other conditions with angiogenesis.