Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838896

RESUMO

Cell membrane (CM) is a phospholipid bilayer that maintains integrity of a whole cell and relates to many physiological and pathological processes. Developing CM imaging tools is a feasible method for visualizing membrane-related events. In recent decades, small-molecular fluorescent probes in the near-infrared (NIR) region have been pursued extensively for CM staining to investigate its functions and related events. In this review, we summarize development of such probes from the aspect of design principles, CM-targeting mechanisms and biological applications. Moreover, at the end of this review, the challenges and future research directions in designing NIR CM-targeting probes are discussed. This review indicates that more efforts are required to design activatable NIR CM-targeting probes, easily prepared and biocompatible probes with long retention time regarding CM, super-resolution imaging probes for monitoring CM nanoscale organization and multifunctional probes with imaging and phototherapy effects.


Assuntos
Corantes Fluorescentes , Espectroscopia de Luz Próxima ao Infravermelho , Corantes Fluorescentes/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Imagem Molecular/métodos , Imagem Óptica , Membrana Celular/metabolismo
2.
Bioact Mater ; 13: 239-248, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35224305

RESUMO

The pathological origin of Alzheimer's disease (AD) is still shrouded in mystery, despite intensive worldwide research efforts. The selective visualization of ß-amyloid (Aß), the most abundant proteinaceous deposit in AD, is pivotal to reveal AD pathology. To date, several small-molecule fluorophores for Aß species have been developed, with increasing binding affinities. In the current work, two organic small-molecule dioxaborine-derived fluorophores were rationally designed through tailoring the hydrophobicity with the aim to enhance the binding affinity for Aß1-42 fibrils -while concurrently preventing poor aqueous solubility-via biannulate donor motifs in D-π-A dyes. An unprecedented sub-nanomolar affinity was found (K d = 0.62 ± 0.33 nM) and applied to super-sensitive and red-emissive fluorescent staining of amyloid plaques in cortical brain tissue ex vivo. These fluorophores expand the dioxaborine-curcumin-based family of Aß-sensitive fluorophores with a promising new imaging agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA