Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35744124

RESUMO

To meet the target for anthropogenic greenhouse gas (GHG) reduction, the European steel industry is obliged to reduce its emissions. A possible pathway to reach this requirement is through developments of new technologies for a GHG-free steel production. One of these processes is the hydrogen plasma smelting reduction (HPSR) developed since 1992 at the Chair of Ferrous Metallurgy at the Montanuniversitaet Leoben in Austria. Based on the already available publication of the methodology in this work, potential process parameters were investigated that influence the reduction kinetics during continuous charging to improve the process further. Preliminary tests with different charging rates and plasma gas compositions were carried out to investigate the impacts on the individual steps of the reduction process. In the main experiments, the obtained parameters were used to determine the effect of the pre-reduction degree on the kinetics and the hydrogen conversion. Finally, the preliminary and main trials were statistically evaluated using the program MODDE® 13 Pro to identify the significant influences on reduction time, oxygen removal rate, and hydrogen conversion. High hydrogen utilization degrees could be achieved with high iron ore feeding rates and low hydrogen concentrations in the plasma gas composition. The subsequent low reduction degree and thus a high proportion of oxide melt leads to a high oxygen removal rate in the post-reduction phase and, consequently, short process times. Calculations of the reduction constant showed an average value of 1.13 × 10-5 kg oxygen/m2 s Pa, which is seven times higher than the value given in literature.

2.
Sci Total Environ ; 838(Pt 3): 156453, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35660588

RESUMO

Electroplating sludge is a hazardous waste and secondary metal resource because of its heavy metal content, which poses a huge threat to environmental safety if not properly disposed. An innovative process of oxidizing roasting followed by water leaching and smelting reduction to recover Cr, Cu, and Ni from electroplating sludge was proposed in this research, in which other two hazardous wastes of spent cathode carbon combustion dust and copper refining slag were co-treated. The NaF from spent cathode carbon combustion dust could convert Cr2O3 to Na2CrO4 using the oxidizing roasting process, resulting in a Cr recovery through the subsequent water leaching. The Na2CrO4 formation was promoted by CaO owing to it transferring the Cr spinel phase of FeCr2O4 [1+] to CaCrO4 and then to Na2CrO4. Under optimal conditions, the Cr recovery reached 97.1 %, and most 'F' was solidified into CaF2. In the next smelting reduction of the leaching residue, the Cu and Ni were recovered mainly in the form of Cu-Ni alloy. The addition of copper refining slag promoted their recovery, due to it modifying the molten slag and alloy structures and increasing the Cu-Ni alloy separation from molten slag. Some generated high-melting-point Cu-Ni-Fe and Ni-Fe alloys were converted to a Cu-Ni alloy with a low melting point in presence of Co from the copper refining slag, simultaneously with which the Fe was transferred out from Cu-Ni-Fe and Ni-Fe alloys and combined with Co to form a Fe-Co alloy. It increased Cu-Ni alloy droplets aggregation from molten slag and decreased their contents in the residual slag. Under optimized conditions, the Cu and Ni contents in the residual slag decreased to 0.37 and 0.06 wt%, respectively. Besides, the residual slag mainly composed of CaO, CaF2 and SiO2 could be used to prepare building materials rendering it harmless.


Assuntos
Metais Pesados , Esgotos , Ligas , Carbono , Cobre , Poeira , Eletrodos , Galvanoplastia , Resíduos Perigosos/análise , Esgotos/química , Dióxido de Silício , Água
3.
Materials (Basel) ; 15(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35888233

RESUMO

The development of a carbon lean steel production process following the concept of direct carbon avoidance is one of the most challenging tasks the iron and steel industry must tackle in just a few decades. The necessary drastic reduction of 80% of the process's inherent emissions by 2050 is only possible if a new process concept that uses hydrogen as the primary reductant is developed. The Hydrogen Plasma Smelting Reduction (HPSR) of ultra-fine iron ores is one of those promising concepts. The principle was already proven at a lab scale. The erection of a bench-scale facility followed this, and further scaled-ups are already planned for the upcoming years. For this scale-up, a better understanding of the fundamentals of the process is needed. In particular, knowledge of the kinetics of the process is essential for future economically feasible operations. This investigation shows the principles for evaluating and comparing the process kinetics under varying test setups by defining a representative kinetic parameter. Aside from the fundamentals for this definition, the conducted trials for the first evaluation are shown and explained. Several differences in the reduction behavior of the material at varying parameters of the process have already be shown. However, this investigation focuses on the description and definition of the method. An overall series of trials for detailed investigations will be conducted as a follow-up.

4.
Materials (Basel) ; 14(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34947334

RESUMO

This work evaluates the characteristics of calcium aluminate slag and pig iron samples obtained from the smelting of calcined and reduced diasporic bauxite ore. The study is conducted in the Pedersen process framework, which is a method to produce alumina from low-grade resources. Parameters such as the effect of crucible type, lime addition, and atmospheric conditions are studied considering the characteristics of the product pig irons and calcium aluminate slags for further uses. The behavior of the bauxite and distribution of the species between slag and metal was assessed based on the applied analytical techniques and thermodynamic calculations. Iron was reduced and separated from the slags in the presence of carbon (graphite crucible) for both the reduced and calcined bauxite. Si and Ti were mainly concentrated in the slags. Iron was separated from the slag in the absence of carbon (alumina crucible) for the H2-reduced bauxite. The results show that slags with increased lime additions are composed mainly of 5CaO.Al2O3 and CaO.Al2O3, that are considered highly leachable compounds. An optimum CaO/Al2O3 mass ratio of 1.12 was suggested. The presence of O2 and/or OH- in the furnace atmosphere will result in the formation of 12CaO.7Al2O3.

5.
Materials (Basel) ; 13(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093176

RESUMO

Replacing carbon by hydrogen is a huge step towards reducing CO2 emissions in the iron- and steel-making industry. The reduction of iron oxides using hydrogen plasma smelting reduction as an alternative to conventional steel-making routes has been studied at Montanuniversitaet Leoben, Austria. The aim of this work was to study the slag formation during the reduction process and the reduction behaviour of iron oxides. Furthermore the reduction behaviour of iron ore during continuous feeding was assessed. Mixtures of iron ore and calcined lime with a basicity of 0, 0.8, 1.6, 2.3, and 2.9 were melted and reduced by hydrogen. The off-gas composition was measured during the operations to calculate the process parameters. The reduction parameters, namely the degree of reduction, degree of hydrogen utilisation, produced iron, and slag, are presented. The results of the batch-charged experiments showed that at the beginning of the reduction process, the degree of hydrogen utilisation was high, and then, it decreased over the operation time. In contrast, during the continuous-feeding experiment, the degree of hydrogen utilisation could be kept approximately constant. The highest degrees of reduction and hydrogen utilisation were obtained upon the application of a slag with a basicity of 2.3. The experiment showed that upon the continuous feeding of iron ore, the best conditions for the reduction process using hydrogen could be applied.

6.
Materials (Basel) ; 12(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100817

RESUMO

The development of hydrogen plasma smelting reduction as a CO2 emission-free steel-making process is a promising approach. This study presents a concept of the reduction of haematite using hydrogen thermal plasma. A laboratory scale and pilot scale hydrogen plasma smelting reduction (HPSR) process are introduced. To assess the reduction behaviour of haematite, a series of experiments have been conducted and the main parameters of the reduction behaviour, namely the degree of hydrogen utilization, degree of reduction and the reduction rate are discussed. The thermodynamic aspect of the hematite reduction is considered, and the pertinent calculations were carried out using FactSageTM 7.2. The degree of hydrogen utilization and the degree of reduction were calculated using the off-gas chemical composition. The contribution of carbon, introduced from the graphite electrode, ignition pin and steel crucible, to the reduction reactions was studied. The degree of reduction of haematite, regarding H2O, CO and CO2 as the gaseous reduction products, was determined. It is shown that the degree of hydrogen utilization and the reduction rate were high at the beginning of the experiments, then decreased during the reduction process owing to the diminishing of iron oxide. Conducting experiments with the high basicity of slag B2 = 2 led to a decrease of the phosphorus concentration in the produced iron.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA