Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Med Sci ; 17(12): 1833-1839, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714086

RESUMO

Catheter-related bloodstream infections (CRBSIs) due to pathogenic microorganisms pose a major threat to patients requiring parenteral nutrition (PN). Additives contained in medicines and foods have antiproliferative and bacteriostatic effects on pathogenic microorganisms. Therefore, PN solutions containing additives may also have an antibacterial effect. However, so far, there have been no reports on or observations of a PN solution with bactericidal activity. In this study, we assessed several nutrition solutions with antimicrobial activities and investigated their effects on pathogenic microorganisms colonizing catheter lumens. We selected the highly acidic Plas-Amino® (PA), which contains a large amount of sodium bisulfite as a preservative and potentially has an antimicrobial effect. In this study, we used the following pathogenic bacteria as the main causatives of CRBSIs: Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Serratia marcescens, Pseudomonas aeruginosa, and Candida albicans. We then created a catheter lumen microorganism contamination model and evaluated the antibacterial effect of PA; we found that all bacteria in the control group grew significantly in the catheter lumen in a time-dependent manner at 48 and 72 h. On the other hand, we demonstrated that PA has bactericidal effects on S. aureus, S. epidermidis, B. cereus, S. marcescens, and P. aeruginosa in the catheter lumen and confirmed that it has a remarkable antiproliferative effect on C. albicans. Hence, we concluded that highly acidic PN solutions that contain a preservative like sodium bisulfite have bactericidal and growth inhibition effects on microorganisms in the catheter lumens of patients with CRBSIs and patients with totally implantable central venous access devices, in whom it is difficult to remove the catheter.


Assuntos
Antibacterianos/farmacologia , Infecções Relacionadas a Cateter/tratamento farmacológico , Soluções de Nutrição Parenteral/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Relacionadas a Cateter/microbiologia , Infecções Relacionadas a Cateter/patologia , Catéteres/microbiologia , Proliferação de Células/efeitos dos fármacos , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/patogenicidade , Infecções Estafilocócicas/patologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/patogenicidade , Sulfitos/farmacologia
2.
BMC Genomics ; 19(1): 540, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012097

RESUMO

BACKGROUND: S. latifolia is a model organism for the study of sex chromosome evolution in plants. Its sex chromosomes include large regions in which recombination became gradually suppressed. The regions tend to expand over time resulting in the formation of evolutionary strata. Non-recombination and later accumulation of repetitive sequences is a putative cause of the size increase in the Y chromosome. Gene decay and accumulation of repetitive DNA are identified as key evolutionary events. Transposons in the X and Y chromosomes are distributed differently and there is a regulation of transposon insertion by DNA methylation of the target sequences, this points to an important role of DNA methylation during sex chromosome evolution in Silene latifolia. The aim of this study was to elucidate whether the reduced expression of the Y allele in S. latifolia is caused by genetic degeneration or if the cause is methylation triggered by transposons and repetitive sequences. RESULTS: Gene expression analysis in S. latifolia males has shown expression bias in both X and Y alleles. To determine whether these differences are caused by genetic degeneration or methylation spread by transposons and repetitive sequences, we selected several sex-linked genes with varying degrees of degeneration and from different evolutionary strata. Immunoprecipitation of methylated DNA (MeDIP) from promoter, exon and intron regions was used and validated through bisulfite sequencing. We found DNA methylation in males, and only in the promoter of genes of stratum I (older). The Y alleles in genes of stratum I were methylation enriched compared to X alleles. There was also abundant and high percentage methylation in the CHH context in most sequences, indicating de novo methylation through the RdDM pathway. CONCLUSIONS: We speculate that TE accumulation and not gene decay is the cause of DNA methylation in the S. latifolia Y sex chromosome with influence on the process of heterochromatinization.


Assuntos
Cromossomos de Plantas , Metilação de DNA , Evolução Molecular , Silene/genética , DNA de Plantas/química , Expressão Gênica , Folhas de Planta/metabolismo , Homologia de Sequência do Ácido Nucleico , Silene/metabolismo
3.
BMC Plant Biol ; 18(1): 314, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30497392

RESUMO

BACKGROUND: Polyploidy, or whole-genome duplication (WGD) promotes genetic diversification in plants. However, whether WGD is accompanied by epigenetic regulation especially DNA methylation remains yet elusive. Methylation of different region in genomic DNA play discrete role in gene regulation and developmental processes in plants. RESULTS: In our study, we used an apomictic rice line (SARII-628) that produces twin seedlings of different ploidy for methylated DNA immunoprecipitation sequencing (MeDIP-seq). We compared the level of methylation and mRNA expression in three different (CG, CHG, and CHH) sequence contexts of promoter region among haploid (1X), diploid (2X), and triploid (3X) seedling. We used MeDIP-Seq analysis of 14 genes to investigate whole genome DNA methylation and found that relative level of DNA methylation across different ploidy was in following order e.g. diploid > triploid > haploid. GO functional classification of differentially methylated genes into 9 comparisons group of promoter, intergenic and intragenic region discovered, these genes were mostly enriched for cellular component, molecular function, and biological process. By the comparison of methylome data, digital gene expression (DGE), mRNA expression profile, and Q-PCR findings LOC_ Os07g31450 and LOC_ Os01g59320 were analyzed for BS-Seq (Bisulphite sequencing). CONCLUSIONS: We found that (1) The level of the promoter DNA methylation is negatively correlated with gene expression within each ploidy level. (2) Among all ploidy levels, CG sequence context had highest methylation frequency, and demonstrated that the high CG methylation did reduce gene expression change suggesting that DNA methylation exert repressive function and ensure genome stability during WGD. (3) Alteration in ploidy (from diploid to haploid, or diploid to triploid) reveals supreme changes in methylation frequency of CHH sequence context. Our finding will contribute an understanding towards lower stability of CHH sequence context and educate the effect of promoter region methylation during change in ploidy state in rice.


Assuntos
Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Oryza/genética , Ploidias , Haploidia , Repetições de Microssatélites/genética , Oryza/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Triploidia
4.
Biochim Biophys Acta Gen Subj ; 1862(10): 2226-2235, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30036601

RESUMO

Protein misfolding and aggregation are associated with amyloidosis. The toxic aggregation of amyloid-ß 1-42 (Aß42) may disrupt cell membranes and lead to cell death and is thus regarded as a contributing factor in Alzheimer's disease (AD). 1,4-naphthoquinone (NQ) has been shown to exhibit strong anti-aggregation effects on amyloidogenic proteins such as insulin and α-synuclein; however, its high toxicity and poor solubility limit its clinical application. Menadione sodium bisulfite (MSB, also known as vitamin K3), is used clinically in China to treat hemorrhagic diseases caused by vitamin K deficiency and globally as a vitamin K supplement. We hypothesized that MSB could inhibit amyloid formation since its backbone structure is similar to NQ. To test our hypothesis, we first investigated the effects of MSB on Aß42 amyloid formation in vitro. We found that MSB inhibited Aß42 amyloid formation in a dose dependent manner, delayed the secondary structural conversion of Aß42 from random coil to ordered ß-sheet, and attenuated the ability of Aß42 aggregates to disrupt membranes; moreover, the quinone backbone rather than lipophilicity is esstial for the inhibitory effects of MSB. Next, in cells expressing a pathogenic APP mutation (Osaka mutation) that results in the formation of intraneuronal Aß oligomers, MSB inhibited the intracellular aggregation of Aß. Moreover, MSB treatment significantly extended the life span of Caenorhabditis elegans CL2120, a strain that expresses human Aß42. Together, these results suggest that MSB and its derivatives may be further explored as potential therapeutic agents for the prevention or treatment of AD.


Assuntos
Peptídeos beta-Amiloides/química , Animais Geneticamente Modificados/crescimento & desenvolvimento , Caenorhabditis elegans/crescimento & desenvolvimento , Fragmentos de Peptídeos/química , Agregação Patológica de Proteínas/prevenção & controle , Vitamina K 3/farmacologia , Vitaminas/farmacologia , Peptídeos beta-Amiloides/efeitos dos fármacos , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Humanos , Longevidade , Fragmentos de Peptídeos/efeitos dos fármacos
5.
Tumour Biol ; 39(6): 1010428317701650, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28618935

RESUMO

This study aims to explore the heterogeneous DNA methylation differences between individual single ovarian cancer cells isolated from the same formalin-fixed and paraffin-embedded human ovarian cancer tissue. Single cells were isolated by laser microdissection. Whole genome amplification and polymerase chain reaction purification were performed on the converted genomic DNA. Target primers designed for checking DNA methylation were used in polymerase chain reaction reactions to amplify special fragments. Sequencing was performed to analyze the heterogeneous DNA methylation statuses of different single ovarian cancer cells. Three of nine single human ovarian cancer cells showed positive bands (33.3%) on separating gel. The methylated and unmethylated CpGs were shown at the same loci in different single cells. We show heterogeneous DNA methylation statuses in same-cell subpopulations.


Assuntos
Ilhas de CpG/genética , Metilação de DNA/genética , Genoma Humano , Neoplasias Ovarianas/genética , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Ovarianas/patologia , Análise de Sequência de DNA , Análise de Célula Única
6.
J Clin Biochem Nutr ; 61(3): 164-168, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29203956

RESUMO

Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) has garnered attention since its approval for amyotrophic lateral sclerosis in Japan (2015) and the United States (2017). Edaravone is administered intravenously, and as such, is distributed in the form of an aqueous solution. However, aqueous solutions of edaravone are very unstable because they present as edaravone anions, which become edaravone radicals when the anion donates an electron to free radicals including oxygen. In this study, glutathione (GSH) stabilized an aqueous edaravone solution during storage at 60°C for 4 weeks, and prevented the formation of potentially carcinogenic phenylhydrazine, while cysteine did not. One possible explanation is that GSH undergoes intermolecular hydrogen bonding with edaravone anions, while cysteine does not, as it favors intramolecular hydrogen boding. The combination of GSH and sodium bisulfite (NaHSO3) stabilized aqueous edaravone at room temperature for more than 1 year even under aerobic conditions. However, the U.S. Food and Drug Administration cautioned that NaHSO3 may cause allergic reactions. Therefore, we developed a stable edaravone aqueous solution without using NaHSO3, namely a combination of GSH with deoxygenation, which resulted in better stabilization of aqueous edaravone than the combination of GSH and NaHSO3.

7.
J Clin Biochem Nutr ; 61(3): 159-163, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29203955

RESUMO

Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) has been used as a free radical scavenging drug for the treatment of acute ischemic stroke in Japan since 2001. Edaravone is given to patients intravenously; therefore, it is distributed in the form of an aqueous solution. However, aqueous solutions of edaravone are very unstable because it is present as edaravone anion, which is capable of transferring an electron to free radicals including oxygen, and becomes edaravone radical. We observed the formation of hydrogen peroxide and edaravone trimer when aqueous edaravone solution was kept at 60°C for 4 weeks. We proposed the mechanism of edaravone trimer formation from edaravone radicals. Lowering the pH and deoxygenation can effectively increase the stability of aqueous edaravone solution, since the former reduces edaravone anion concentration and the latter inhibits edaravone radical formation. Addition of sodium bisulfite partially stabilized aqueous edaravone solutions and partially inhibited the formation of edaravone trimer. Formation of bisulfite adduct was suggested by 13C NMR and HPLC studies. Therefore, the stabilizing effect of sodium bisulfite is ascribed to the formation of a bisulfite adduct of edaravone and, consequently, reduction in the concentration of edaravone anion.

8.
BMC Microbiol ; 16(1): 130, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27349222

RESUMO

BACKGROUND: Escherichia coli K-12 strains contain DNA cytosine methyltransferase (Dcm), which generates 5-methylcytosine at 5'CCWGG3' sites. Although the role of 5-methylcytosine in eukaryotic gene expression is relatively well described, the role of 5-methylcytosine in bacterial gene expression is largely unknown. RESULTS: To identify genes that are controlled by 5-methylcytosine in E. coli, we compared the transcriptomes of cells grown in the absence and presence of the DNA methylation inhibitor 5-azacytidine. We observed expression changes for 63 genes. The majority of the gene expression changes occurred at early stationary phase and were up-regulations. To identify gene expression changes due to a loss of DNA methylation, we compared the expression of selected genes in a wild-type and dcm knockout strain via reverse transcription quantitative PCR. CONCLUSIONS: Our data indicate that 5-azacytidine can influence gene expression by at least two distinct mechanisms: DNA methylation loss and a mechanism that is independent of DNA methylation loss. In addition, we have identified new targets of 5-methylcytosine-mediated regulation of gene expression. In summary, our data indicate that 5-azacytidine impacts the composition of the bacterial transcriptome, and the primary effect is increased gene expression at early stationary phase.


Assuntos
Azacitidina/antagonistas & inibidores , Metilação de DNA/efeitos dos fármacos , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , 5-Metilcitosina/metabolismo , 5-Metilcitosina/fisiologia , Sequência de Bases , Técnicas de Cultura de Células , Citosina , DNA Bacteriano , Escherichia coli K12/crescimento & desenvolvimento , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/genética , Técnicas de Inativação de Genes , Genes Bacterianos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , RNA Bacteriano/isolamento & purificação , Análise de Sequência , Regulação para Cima
9.
Plant Cell Environ ; 39(12): 2713-2724, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27577027

RESUMO

High sea surface temperature accompanied by high levels of solar irradiance is responsible for the disruption of the symbiosis between cnidarians and their symbiotic dinoflagellates from the genus Symbiodinium. This phenomenon, known as coral bleaching, is one of the major threats affecting coral reefs around the world. Because an important molecular trigger to bleaching appears related to the production of reactive oxygen species (ROS), it is critical to understand the function of the antioxidant network of Symbiodinium species. In this study we investigated the response of two Symbiodinium species, from contrasting environments, to a chemically induced oxidative stress. ROS produced during this oxidative burst reduced photosynthesis by 30 to 50% and significantly decreased the activity of superoxide dismutase. Lipid peroxidation levels and carotenoid concentrations, especially diatoxanthin, confirm that these molecules act as antioxidants and contribute to the stabilization of membrane lipids. The comparative analysis between the two Symbiodinium species allowed us to highlight that Symbiodinium sp. clade A temperate was more tolerant to oxidative stress than the tropical S. kawagutii clade F. These differences are very likely a consequence of adaptation to their natural environment, with the temperate species experiencing conditions of temperature and irradiance much more variable and extreme.


Assuntos
Dinoflagellida/metabolismo , Estresse Oxidativo , Adaptação Fisiológica , Carotenoides/metabolismo , Recifes de Corais , Meio Ambiente , Peroxidação de Lipídeos , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória , Superóxido Dismutase/metabolismo , Temperatura
10.
Pharmacol Res ; 103: 300-17, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26687095

RESUMO

We have investigated the growth-suppressive action of epigallocatechin-3-gallate (EGCG) on human leukemia Jurkat T cells. Results show a strong correlation between the dose-dependent reduction of clonogenic survival following acute EGCG treatments and the EGCG-induced decline of the mitochondrial level of Ca(2+). The cell killing ability of EGCG was synergistically enhanced by menadione. In addition, the cytotoxic effect of EGCG applied alone or in combination with menadione was accompanied by apoptosis induction. We also observed that in acute treatments EGCG displays strong antioxidant properties in the intracellular milieu, but concurrently triggers some oxidative stress generating mechanisms that can fully develop on a longer timescale. In parallel, EGCG dose-dependently induced mitochondrial depolarization during exposure, but this condition was subsequently reversed to a persistent hyperpolarized mitochondrial state that was dependent on the activity of respiratory Complex I. Fluorimetric measurements suggest that EGCG is a mitochondrial Complex III inhibitor and indicate that EGCG evokes a specific cellular fluorescence with emission at 400nm and two main excitation bands (at 330nm and 350nm) that may originate from a mitochondrial supercomplex containing dimeric Complex III and dimeric ATP-synthase, and therefore could provide a valuable means to characterize the functional properties of the respiratory chain.


Assuntos
Catequina/análogos & derivados , Células Jurkat/efeitos dos fármacos , Vitamina K 3/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Catequina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células Jurkat/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
11.
Zhonghua Nan Ke Xue ; 22(6): 516-519, 2016 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-28963840

RESUMO

OBJECTIVE: To investigate the 5'-flanking regulatory sequence methylation status of the Boule gene in the testis tissue of infertile men with Sertoli cell-only syndrome (SCOS). METHODS: We collected biopsy samples of the testis tissue from 12 men with obstructive azoospermia (the control group) and 15 cases of SCOS, all without varicocele, cryptorchidism, or infectious disease. We extracted genomic DNA from the testis tissue of the SCOS patients, analyzed the characteristics of the 5'-flanking regulatory sequence of the Boule gene using the bioinformatics method, and detected the methylation status of the Boule gene by sodium bisulfite sequencing. RESULTS: A CpG island was observed in the 5'-flanking regulation region of the Boule gene. The methylation level of the Boule gene was remarkably higher in the SCOS group than in the obstructive azoospermia controls (61.4% vs 21.7%, P<0.01), with significant differences in the methylation levels of 14 CpG sites, namely, -58 bp, -50 bp, -48 bp, -38 bp, -28 bp, -24 bp, -20 bp, -15 bp, -1 bp, +5 bp, +8 bp, +15 bp, +29 bp, and +58 bp. CONCLUSIONS: The methylation level of the Boule gene is significantly higher in the SCOS patients than in the obstructive azoospermia males, which suggests that the changes in Boule methylation may be associated with spermatogenic dysfunction.


Assuntos
Metilação de DNA , Proteínas de Ligação a RNA/genética , Síndrome de Células de Sertoli/genética , Testículo/metabolismo , Estudos de Casos e Controles , Humanos , Masculino , Espermatogênese
12.
FASEB J ; 28(2): 966-77, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24161885

RESUMO

Sexual differences are only partially attributable to hormones. Cultured male or female cells, even from embryos before sexual differentiation, differ in gene expression and sensitivity to toxins, and these differences persist in isolated primary cells. Male and female cells from Swiss Webster CWF mice manifest sex-distinct patterns of DNA methylation for X-ist and for cytochrome P450 (CYP; family members 1a1, 2e1m, and 7b1. Dnmt3l is differentially expressed but not differentially methylated, and Gapdh is neither differentially methylated nor expressed. CYP family genes differ in expression in whole tissue homogenates and cell cultures, with female Cyp expression 2- to 355-fold higher and Dnmt3l 12- to 32-fold higher in males. DNA methylation in the promoters of these genes is sex dimorphic; reducing methylation differences reduces to 1- to 6-fold differences in the expression of these genes. Stress or estradiol alters both methylation and gene expression. We conclude that different methylation patterns partially explain the sex-based differences in expression of CYP family members and X-ist, which potentially leads to inborn differences between males and females and their different responses to chronic and acute changes. Sex-differential methylation may have medical effects.


Assuntos
Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP2E1/genética , Metilação de DNA/genética , Esteroide Hidroxilases/genética , Animais , Azacitidina/análogos & derivados , Azacitidina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Família 7 do Citocromo P450 , DNA (Citosina-5-)-Metiltransferases/genética , Decitabina , Estradiol/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Sulfitos/farmacologia
13.
J Agric Food Chem ; 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36758115

RESUMO

Biostimulants are an interesting strategy to increase crop tolerance to water deficits, and there is an extensive bibliography on them. However, most of them need to be treated continuously to increase protection throughout the growth cycle. In this context, we chose menadione sodium bisulfite, whose protective effect against water deficit has been previously demonstrated but only for a short period of time. Nanoencapsulation seems to be an interesting way to improve the properties of biostimulants. Our results show that menadione sodium bisulfite (MSB) encapsulated in chitosan/tripolyphosphate nanoparticles can increase the system's tolerance against an imposed water deficit and delay the need for retreatment by at least 1 week, accelerating plant recovery after rehydration. This highlights the positive properties of nanoencapsulation and shows how a simple encapsulation process can significantly improve the biostimulant protective properties, opening up new possibilities to be explored under field conditions to cope with water-deficit stress.

14.
Environ Sci Pollut Res Int ; 30(13): 35670-35682, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36538219

RESUMO

The groundwater polluted by an agricultural hormone site was taken as the research object, and a total of 7 groundwater samples were collected at different locations in the plant. The main pollutants in the research area were determined to be extractable petroleum hydrocarbons (C10-C40); 1,2-dichloroethane; 1,1,2-trichloroethane; carbon tetrachloride; vinyl chloride, and chloroform; the maximum content of these pollutants can reach 271 mg/L, 1.68 × 107 µg/L, 1.56 × 104 µg/L, 9.53 × 104 µg/L, 6.58 × 104 µg/L, and 4.81 × 104 µg/L, respectively. Aiming at the problems of groundwater pollution in this area, two sets of oxidation experiments have been carried out. The addition of NaHSO3 modified Fenton oxidation system was used in this contaminated water, which enhanced (2.2 ~ 46.7%) chemical oxygen demand (COD) removal rate. The highest removal rate of extractable petroleum hydrocarbons (C10-C40) can reach 99%. And the degradation rate of chlorinated hydrocarbon pollutants can reach 99% to 100%, which almost achieved the purpose of complete removal. In the NaHSO3 modified Fenton oxidation system, the addition of NaHSO3 accelerates the cycle of Fe3+/Fe2+ and ensures the continuous existence of Fe2+ in the reaction system, thereby producing more ·OH and further oxidizing and degrading organic pollutants. Our work has provided important insights for this economically important treatment of this type water body and laid the foundation for the engineering of this method.


Assuntos
Poluentes Ambientais , Água Subterrânea , Petróleo , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Peróxido de Hidrogênio/química , Oxirredução , Água Subterrânea/química , Poluição da Água , Hidrocarbonetos/química , Água
15.
J Biosci Bioeng ; 135(3): 203-209, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36628842

RESUMO

The high production of acetic acid (AC) as a by-product leads to difficult separation and purification of succinic acid (SA) and increases production costs in SA fermentation by Actinobacillus succinogenes. NaHSO3 as a steering agent was used to reduce AC production. Herein, the optimum fermentation conditions were achieved by single-factor and orthogonal tests as follows: glucose 60 g/L; MgCO3 60 g/L; NaHSO3 0.15% (w/v); and NaHSO3 addition time, 8 h after inoculation. After optimization, the SA and AC contents were 44.42 and 5.73 g/L. The SA improved by 100.72%, the AC decreased by 21.18% compared with the unfermented. The acetate kinase activity decreased by 14.36% and acetyl-CoA content improved by 97.55% in the group of NaHSO3 addition compared with control check (CK). The mechanism of NaHSO3 is formation acetaldehyde-sodium bisulfite compound and reduction the activity of acetate kinase. These findings indicated a new way of using NaHSO3 as a steering agent to reduce AC generation and may help promote the development of SA industrial production.


Assuntos
Ácido Acético , Actinobacillus , Acetato Quinase , Fermentação , Ácido Succínico
16.
Pest Manag Sci ; 78(3): 974-981, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34738317

RESUMO

BACKGROUND: Botrytis cinerea, the causal agent of gray mold has a great economic impact on several important crops. This necrotrophic fungus causes disease symptoms during vegetative growth and also into postharvest stages. The current method to combat this disease is fungicide application, with high economic costs and environmentally unsustainable impacts. Moreover, there is an increasing general public health concern about these strategies of crop protection. We studied the protection of tomato plants against B. cinerea by previous root treatment with menadione sodium bisulfite (MSB), a known plant defense activator. RESULTS: Root treatment 48 h before inoculation with MSB 0.6 mmol L-1 reduced leaf lesion diameter by 30% and notably cell deaths, compared to control plants 72 h after inoculation. We studied the expression level of several pathogenesis-related (PR) genes from different defense transduction pathways, and found that MSB primes higher PR1 expression against B. cinerea. However, this stronger induced resistance was impaired in transgenic salicylic acid-deficient NahG line. Additionally, in the absence of pathogen challenge, MSB increased tomato plant growth by 28% after 10 days. Our data provide evidence that MSB protects tomato plants against B. cinerea by priming defense responses through the salicylic acid (SA)-dependent signaling pathway and reducing oxidative stress. CONCLUSION: This work confirms the efficacy of MSB as plant defense activator against B. cinerea and presents a novel alternative to combat gray mold in important crops.


Assuntos
Fungicidas Industriais , Solanum lycopersicum , Botrytis , Resistência à Doença , Fungicidas Industriais/farmacologia , Regulação da Expressão Gênica de Plantas , Humanos , Doenças das Plantas , Vitamina K 3
17.
Methods Mol Biol ; 2528: 55-66, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35704185

RESUMO

During transcription and replication, R-loops that contain RNA-DNA hybrids are generated across numerous genomic loci and contribute to many biological events. Using S9.6, a monoclonal antibody against RNA-DNA hybrids, accelerated the study of R-loop biology. An outpouring of recent studies has implicated various contributions of R-loop in physiological cellular functions. Earlier studies using nondenaturing sodium bisulfite probing also supported existence of DNA-RNA hybrids formation in mammalian cells. In activated B cells, RNA-DNA hybrids formation at IgH gene locus of B cells is crucial for class switch recombination that ensure the proper effector function of the antibody. Here, we describe the identification of R-loops associated with the IgH locus using RNA-DNA hybrid immunoprecipitation sequencing and nondenaturing sodium bisulfite probing. This will be helpful for future studies of R-loops status on whole genome as well as on IgH locus in B cells.


Assuntos
Estruturas R-Loop , RNA , Animais , DNA/genética , Switching de Imunoglobulina/genética , Imunoprecipitação , Mamíferos/genética , RNA/genética
18.
Int Immunopharmacol ; 110: 109007, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35779489

RESUMO

Ulcerative colitis (UC), an inflammatory disease, is widely thought to be associated with colonic barrier damage and inflammatory response. With the destruction of the colonic barrier, lipopolysaccharide (LPS) enters the liver through the portal vein and causes liver injury. Liver injury in turn exacerbates UC to form a vicious cycle, so the treatment of liver injury cannot be ignored. Andrographolide (Andro) has a protective effect against colitis and liver injury, but with low bioavailability. Andrographolide sodium bisulfite (ASB), a water-soluble sulfonate of Andro, has better bioavailability, whether it has a better curative effect against UC and liver injury is rarely reported. Hence, we investigated the protective effect and potential mechanism of ASB against dextran sulfate sodium (DSS)-induced UC and liver injury in mice. The results showed that treatment with ASB significantly relieved the clinical symptoms of UC and liver injury by reducing disease activity index, inhibiting gut-derived LPS leakage, and improving colonic and hepatic injury, and its curative effect was better than Andro. Moreover, ASB effectively decreased the YAP-mediated colonic inflammation and TLR4/MyD88/NF-κB-mediated pro-inflammatory factor release in the liver. Both colonic and hepatic inflammation were associated with macrophage proinflammatory polarization, but they were significantly inhibited by ASB. ASB showed good safety in the treatment of UC and liver injury and has no nephrotoxicity as previously described. In conclusion, ASB has an effective protective effect on DSS-induced UC and liver injury, mainly by suppressing macrophage proinflammatory polarization from the gut-liver axis.


Assuntos
Colite Ulcerativa , Colite , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colo , Sulfato de Dextrana/farmacologia , Modelos Animais de Doenças , Diterpenos , Inflamação , Lipopolissacarídeos/farmacologia , Fígado , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B , Sulfitos
19.
Toxicol Lett ; 359: 73-83, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35114314

RESUMO

Sulfites and other preservatives are considered food additives to prevent pathogen growth in food, and they are generally regarded as safe since the late 1950s. However, the possible effects of sulfites on potential damage to host intestinal tissue remain largely unexplored. Given that endogenous sulfite mainly comes from the metabolism of biothiol, we attempted to clarify the relationship among biothiol levels, gut and food additives sulfite, including sodium bisulfite (NaHSO3), and the possible mechanism of sulfite affecting the intestine. In the present study, the NaHSO3 treatments markedly increased the homocysteine (Hcy) level but decreased the cysteine (Cys) level by promoting the expression of Hcy synthase and inhibiting the activities of cystathionine ß-synthase and cystathionine γ-lyase in NCM460 cells. The level of methionine (Met) was not significantly changed, but NaHSO3 promoted ROS-mediated NF-κB signaling pathway, and increased the expressions of proinflammatory cytokines by regulating the levels of Hcy and Cys in NCM460 cells. Vitamin B6 (VB6) supplementation successfully ameliorated NaHSO3-induced damage in NCM460 cells and the colon of Balb/c mice. Altogether, our study provided valuable insights into the safety evaluation of food preservatives. Besides, VB6 could be used as a promising candidate in novel therapies for sodium bisulfite-induced intestinal inflammation.


Assuntos
Colo/efeitos dos fármacos , Aditivos Alimentares/toxicidade , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Enteropatias/induzido quimicamente , Enteropatias/tratamento farmacológico , Compostos de Sulfidrila/metabolismo , Vitamina B 6/uso terapêutico , Animais , Células Cultivadas/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
20.
Yakugaku Zasshi ; 142(4): 303-315, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-35370183

RESUMO

Among healthcare-associated infections, catheter-related bloodstream infection (CRBSI) shows a high case fatality rate and is serious threat. CRBSI are a problem to be eradicated. This study was conducted to reveal the growth characteristics of the causative microorganisms of CRBSI and investigate relevant control methods. The effects of biotin on growth of Candida albicans (C. albicans) in the nutrient solutions were investigated. Upon comparing general solutions and biotin-containing solutions, C. albicans showed auxotrophy against biotin, resulting in significant proliferative potential. CRBSI is caused by biofilm formation in the catheter lumen and subsequent proliferation. The effect of biotin on the colonization of C. albicans in the catheter lumen was evaluated. Candida albicans colonization in the catheter lumen and subsequent proliferation were significantly higher than those in control solutions. To investigate methods for CRBSI control, effects on pathogenic microorganisms were examined by screening for nutrient solutions with antimicrobial activity, using a catheter-lumen contamination model. A commercially available solution (PLAS-AMINO® injection; PA) containing the highest amount of sodium bisulfite was selected. Gram-positive or negative bacteria and C. albicans were used as the causative microorganisms of CRBSI in the study. Dripping PA into each catheter-lumen contamination model demonstrated bactericidal effects against all bacteria tested and strong growth-inhibitory effects on C. albicans. By using PA for contamination inside the catheter, sterilization and suppression of bacterial growth can be expected without having to remove central venous catheters and/or central venous access devices. This review provides valuable findings for the development of novel control methods for CRBSI.


Assuntos
Cateterismo Venoso Central , Sepse , Bactérias , Catéteres , Humanos , Nutrientes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA