Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Planta ; 259(6): 145, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709313

RESUMO

MAIN CONCLUSION: Soil acidity in Ethiopian highlands impacts barley production, affecting root system architecture. Study on 300 accessions showed significant trait variability, with potential for breeding enhancement. Soil acidity poses a significant challenge to crop production in the highland regions of Ethiopia, particularly impacting barley, a crucial staple crop. This acidity serves as a key stressor affecting the root system architecture (RSA) of this crop. Hence, the objective of this study was to assess the RSA traits variability under acidic soil conditions using 300 barley accessions in a greenhouse experiment. The analysis of variance indicated substantial variations among the accessions across all traits studied. The phenotypic coefficient of variation ranged from 24.4% for shoot dry weight to 11.1% for root length, while the genotypic coefficient variation varied between 18.83 and 9.2% for shoot dry weight and root length, respectively. The broad-sense heritability ranged from 36.7% for leaf area to 69.9% for root length, highlighting considerable heritability among multiple traits. The genetic advances as a percent of the mean ranged from 13.63 to 29.9%, suggesting potential for enhancement of these traits through breeding efforts. Principal component analysis and cluster analysis grouped the genotypes into two major clusters, each containing varying numbers of genotypes with contrasting traits. This diverse group presents an opportunity to access a wide range of potential parent candidates to enhance genetic variablity in breeding programs. The Pearson correlation analysis revealed significant negative associations between root angle (RA) and other RSA traits. This helps indirect selection of accessions for further improvement in soil acidity. In conclusion, this study offers valuable insights into the RSA characteristics of barley in acidic soil conditions, aiding in the development of breeding strategies to enhance crop productivity in acidic soil environments.


Assuntos
Genótipo , Hordeum , Raízes de Plantas , Plântula , Solo , Hordeum/genética , Hordeum/fisiologia , Hordeum/crescimento & desenvolvimento , Hordeum/anatomia & histologia , Solo/química , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/anatomia & histologia , Fenótipo , Concentração de Íons de Hidrogênio , Melhoramento Vegetal , Etiópia , Variação Genética , Análise de Componente Principal , Ácidos/metabolismo
2.
Environ Res ; 243: 117885, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38072100

RESUMO

The abundance and diversity of the microflora in a complex environment such as soil is everchanging. Mica mining has led to metalloid poisoning and changes in soil biogeochemistry affecting the overall produce and leading to toxic dietary exposure. The study focuses on two prominent stressors acidity and arsenic, in mining-contaminated agricultural locations. Soil samples were collected from agricultural fields at a distance of 50 m (zone 1) and 500 m (zone 2) from active mines. Mean arsenic concentration was higher in zone 1 and pH was lower. Geostatistical and self-organizing maps were employed to report that the pattern of localization of soil acidity and arsenic content is similar indicating a causal relationship. Cluster and principal component analysis were further used to materialize a negative effect of soil acidity fractions and arsenic labile pool on soil enzymatic activity (fluorescein diacetate, dehydrogenase, ß-1,4-glucosidase, phosphatase, and urease), respiration and Microbial biomass carbon. Soil metagenomic analysis revealed significant differences in the abundance of microbial populations with zone 1 (contaminated zone) having lower alpha and beta diversity. Finally, the efficacy of several machine-learning tools was tested using Taylor diagrams and an effort was made to select a potent algorithm to predict the causal stressors responsible for depreciating soil microbial health. Random Forrest had superior predictive power based on numerical evidence and was therefore chosen as the best-fitted model. The aforementioned insights into soil microbial health and sustenance in stressed conditions can be beneficial for predicting remedial strategies and practicing sustainable agriculture.


Assuntos
Arsênio , Metaloides , Microbiota , Poluentes do Solo , Arsênio/toxicidade , Metaloides/análise , Agricultura , Solo/química , Microbiologia do Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
3.
J Environ Manage ; 365: 121511, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909579

RESUMO

Understanding the spatial distribution of plant available soil nutrients and influencing soil properties and delineation soil nutrient management zones (MZs) are important for implementing precision nutrient management options (PNMO) in an area to achieve maintainable crop production. We assessed spatial distribution pattern of plant available sulphur (S) (PAS), boron (B) (PAB), zinc (PAZn), manganese (PAMn), iron (PAFe), and copper (PACu), and soil organic carbon (SOC), pH, and electrical conductivity (EC) to delineate soil nutrients MZs in northeastern region of India. A total of 17,471 representative surface (0-15 cm depth) soil samples were collected from the region, processed, and analysed for above-mentioned soil parameters. The values of PAS (0.22-99.2 mg kg-1), PAB (0.01-6.45 mg kg-1), PAZn (0.05-13.9 mg kg-1), PAMn (0.08-158 mg kg-1), PAFe (0.50-472 mg kg-1), PACu (0.01-19.2 mg kg-1), SOC (0.01-5.80%), pH (3.19-7.56) and EC (0.01-1.66 dS m-1) varied widely with coefficient of variation of 15.5-108%. The semivariogram analysis highlighted exponential, Gaussian and stable best fitted models for soil parameters with weak (PACu), moderate (PAB, PAZn, PAFe, SOC, pH, and EC) and strong (PAS, and PAMn) spatial dependence. The ordinary kriging interpolation revealed different distribution patterns of soil parameters. About 14.8, 27.5, and 3.40% area of the region had PAS of ≤15.0 mg kg-1, PAB of ≤0.50 mg kg-1, and PAZn of had ≤0.90 mg kg-1, respectively. About 67.5, and 32.5% area had SOC content >1.00 and < 1.00%, respectively. Soil pH was ≤5.50, and >5.50 to ≤6.50 in 41.7 and 40.3% area of the region, respectively. The techniques of principal component analysis and fuzzy c-mean algorithm clustering produced 6 MZs of the region with different areas and values of soil parameters. The MZs had different levels of deficiency pertaining to PAS, PAB, and PAZn. The produced MZ maps could be used for managing PAS, PAB, PAZn, SOC and soil pH in order to implement PNMO. The study highlighted the usefulness of MZ delineation technique for implementation of PNMO in different cultivated areas for sustainable crop production.


Assuntos
Solo , Solo/química , Índia , Zinco/análise , Nutrientes/análise , Ferro/análise , Boro/análise , Análise de Componente Principal , Análise por Conglomerados , Lógica Fuzzy , Manganês/análise
4.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047598

RESUMO

Agriculture involving industrial fertilizers is another major human made contributing factor to soil pH variation after natural factors such as soil parent rock, weathering time span, climate, and vegetation. The current study assessed the potential effect of cell-free supernatant (CFS) obtained from Bacillus subtilis EB2004S and Lactobacillus helveticus EL2006H cultured at three pH levels (5, 7, and 8) on potato (var Goldrush) growth enhancement in a greenhouse pot experiment. The results showed that CFSs obtained from B. subtilis EB2004S and L. helveticus EL2006H cultured at pH 5 significantly improved photosynthetic rates, stomatal conductance, root fresh weight, and whole plant fresh weight. interactive effects of pot pH and that of CFSs obtained from pH 5 influenced chlorophyll, plant height, and shoot and whole plant fresh weight. Moreover, treatment 52EB2004S~0.4% initiated early tuberization for potato grown at pH 7 and 8. Potato grown at pH 5, which received a 72EB2004S~0.4% CFS treatment, had greater whole plant fresh and dry weight than that treated with L. helveticus EL2006H CFS and a positive control. Taken together, the findings of this study are unique in that it probed the effect of CFS produced under differing pH conditions which revealed a new possibility to mitigate stresses in plants.


Assuntos
Lactobacillus helveticus , Solanum tuberosum , Humanos , Bacillus subtilis , Solo , Concentração de Íons de Hidrogênio
5.
Ecotoxicology ; 30(10): 1957-1968, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34495442

RESUMO

Soil microbial communities are important for biogeochemical processes, along with the cycling of nutrients in an ecosystem. Their enzymatic activities are key indicators of their responses to stress. The objective of this research was to assess the effect of land reclamation on microbial biomass and activities in soils impacted by metal contamination. Phospholipid fatty acid analysis (PLFA) (PLFA) results revealed a significant increase in total microbial biomass, fungi, actinomycetes, and bacteria when limed soils were compared to unlimed samples. This change in microbial biomass was associated with a significant increase of pH. The overall level of the ß-glucosidase (BG), cellobiohydrolase (CBH), and aryl sulfatase (AS) activities was significantly higher in the dolomitic limestone treated soils than in the untreated samples. However, the activity of glycine aminopeptidase (GAP) was significantly lower in the limed soil than in unlimed samples used as reference. No significant differences (P ≥ 0.05) were observed between the two types of lands (limed vs unlimed) for other enzymes tested, which includes ß-N-acetylglucosaminidase (NAGase), acid phosphatase (AP), alkaline phosphatase (ALP), leucine aminopeptidase (LAP), and peroxidase (PER). The levels of enzymatic responses also varied among sites. Overall, this study revealed for the first time the effects of liming on soil microbial activities in recently reclaimed sites damaged by metals.


Assuntos
Ecossistema , Microbiologia do Solo , Biomassa , Fungos , Solo
6.
J Environ Manage ; 297: 113306, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34280864

RESUMO

Forest soil acidification caused by acid deposition is a serious threat to the forest ecosystem. To investigate the liming effects of biomass ash (BA) and alkaline slag (AS) on the acidic topsoil and subsoil, a three-year field experiment under artificial Masson pine was conducted at Langxi, Anhui province in Southern China. The surface application of BA and AS significantly increased the soil pH, and thus decreased exchangeable acidity and active Al in the topsoil. Soil exchangeable Ca2+ and Mg2+ in topsoil were significantly increased by the surface application of BA and AS, while an increase in soil exchangeable K+ was only observed in BA treatments. The soil acidity and active Al in subsoil were decreased by the surface application of AS. Compared with the control, soluble monomeric and exchangeable Al in the subsoil was decreased by 38.0% and 29.4% after 3 years of AS surface application. There was a minimal effect on soluble monomeric and exchangeable Al after the application of BA. The soil exchangeable Ca2+ and Mg2+ in the subsoil increased respectively by 54% and 141% after surface application of 10 t ha-1 AS. The decrease of soil active Al and increase of base cations in subsoil were mainly attributed to the high migration capacity of base cations in AS. In conclusion, the effect of surface application of AS was superior to BA in ameliorating soil acidity and alleviating soil Al toxicity in the subsoil of this Ultisol.


Assuntos
Pinus , Poluentes do Solo , Biomassa , Ecossistema , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
7.
Molecules ; 26(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34443316

RESUMO

The study attempted to identify the soil components and the principal adsorption mechanisms that bind tebuconazole in mineral soils. The KF values of the Freundlich isotherm determined in 18 soils from six soil profiles in batch experiments after 96 h of shaking ranged from 1.11 to 16.85 µg1-1/n (mL)1/n g-1, and the exponent 1/n values from 0.74 to 1.04. The adsorption of tebuconazole was inversely correlated with the soil pH. Both neutral and protonated forms of this organic base were adsorbed mainly on the fraction of humins. The adsorption of the protonated form increased in the presence of hydrogen cations adsorbed in the soil sorption sites. Fourier transform infrared spectroscopy coupled with the molecular modeling studies and partial least squares regression analysis indicated that the tebuconazole molecule is bound in the organic matter through the formation of hydrogen bonds as well as hydrophobic and π-π interactions. Ion exchange was one of the adsorption mechanisms of the protonated form of this fungicide. The created mathematical model, assuming that both forms of tebuconazole are adsorbed on the organic matter and adsorption of the protonated form is affected by the potential acidity, described its adsorption in soils well.

8.
Glob Chang Biol ; 26(10): 5796-5815, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32645233

RESUMO

At two forest sites in Germany (Pfaffenwinkel, Pustert) stocked with mature Scots pine (Pinus sylvestris L.), we investigated changes of topsoil chemistry during the recent 40 years by soil inventories conducted on replicated control plots of fertilization experiments, allowing a statistical analysis. Additionally, we monitored the nutritional status of both stands from 1964 until 2019 and quantified stand growth during the monitoring period by repeated stand inventories. Moreover, we monitored climate variables (air temperature and precipitation) and calculated annual climatic water balances from 1991 to 2019. Atmospheric nitrogen (N) and sulfur (S) deposition between 1964 and 2019 was estimated for the period 1969-2019 by combining annual deposition measurements conducted in 1985-1987 and 2004 with long-term deposition records from long-term forest monitoring stations. We investigated interrelations between topsoil chemistry, stand nutrition, stand growth, deposition, and climate trends. At both sites, the onset of the new millennium was a turning point of important biogeochemical processes. Topsoil acidification turned into re-alkalinization, soil organic matter (SOM) accumulation stopped, and likely turned into SOM depletion. In the new millennium, topsoil stocks of S and plant-available phosphorus (P) as well as S and P concentrations in Scots pine foliage decreased substantially; yet, age-referenced stand growth remained at levels far above those expected from yield table data. Tree P and S nutrition as well as climate change (increased temperature and drought stress) have replaced soil acidification as major future challenges for both forests. Understanding of P and S cycling and water fluxes in forest ecosystems, and consideration of these issues in forest management is important for successfully tackling the new challenges. Our study illustrates the importance of long-term forest monitoring to identify slow, but substantial changes of forest biogeochemistry driven by natural and anthropogenic global change.


Assuntos
Ecossistema , Pinus sylvestris , Mudança Climática , Florestas , Alemanha , Nitrogênio/análise , Solo , Árvores
9.
Ecotoxicol Environ Saf ; 193: 110355, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32120164

RESUMO

In the Montado system, in Portuguese Alentejo region, some Eutric Cambisols are known to promote manganese (Mn) toxicity in wheat. Variation on bioavailable Mn concentration depends on soil acidity, which can be increased by natural events (e.g. waterlogging) or human activity (e.g. excess use of chemical fertilizers). The effect of increasing soil Mn on crop element uptake, element distribution and oxidative stress was evaluated on winter wheat (Triticum aestivum). Plants were grown for 3 weeks in an acidic Cambisol spiked with increasing Mn concentrations (0, 45.2 and 90.4 mg MnCl2/Kg soil). Calcium (Ca), phosphorus (P), magnesium (Mg) and Mn were quantified in the soil solution, root and shoot tissues and respective subcellular fractions. The activity of the antioxidant enzymes ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), guaiacol peroxidase (GPX) and superoxide dismutase (SOD) were determined in extracts of wheat shoots and roots. Overall, increase in soil bioavailable Mn inhibited the uptake of other elements, increased the Ca proportion in the root apoplast, promoted the translocation of Mn and P to shoot tissues and increased their proportion in the shoot vacuoles. Wheat roots showed greater antioxidant enzymes activities than shoots. These activities decreased at the highest soil Mn concentration in both plant parts. Wheat roots appear to be more sensitive to oxidative stress derived from excess soil Mn and promote Mn translocation and storage in shoot vacuoles, probably in Mn and P complexes, as a detoxification strategy. Improvement in wheat production, in acidic soils, may rely on the enhancement of its Mn detoxification strategies.


Assuntos
Manganês/toxicidade , Poluentes do Solo/toxicidade , Triticum/efeitos dos fármacos , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Transporte Biológico , Cálcio/metabolismo , Catalase/metabolismo , Glutationa Redutase/metabolismo , Magnésio/metabolismo , Manganês/farmacocinética , Estresse Oxidativo , Peroxidase/metabolismo , Fósforo/metabolismo , Solo/química , Poluentes do Solo/farmacocinética , Superóxido Dismutase/metabolismo , Triticum/enzimologia , Triticum/metabolismo
10.
Geoderma ; 375: 114500, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33012838

RESUMO

While the importance of soils in agriculture cannot be overlooked, plot level soil data remain scarce in the current data landscape. Large-scale household surveys efforts are increasing in low-income countries and assessing the accuracy, scalability and cost-effectiveness of available methods is crucial. Here, we firstly explore soil data requirements for a set of objectives that include identifying a soil constraint, improving recommendation domain studies and capturing soil metrics as covariates, or as outcomes. We then expose the lessons learned from a methodological experiment in rural Ethiopia, where different approaches - farmer's self-elicitation and miniaturized spectrometers - are compared against laboratory benchmarks for a set of soil parameters: soil texture, soil pH and soil organic C. With the exception of soil particle sizes, we find that soil parameters captured through farmer's elicitation do not converge with objective metrics. Miniaturized spectrometers can provide reasonably accurate data for the identification of soil constraints - soil acidity, low organic C or sandy soils. Approximate quantitative predictions can also be delivered for soil pH (R2 = 0.72) and organic C (R2 = 0.60). The additional costs of plot sampling and analysis are in the range of $19-$23 per sample, with the additional percentage of plots with correct data equivalent to 10% for the identification of sandy soils, 75% for low organic C and 89% of acidic soils.

11.
Sensors (Basel) ; 19(23)2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801215

RESUMO

Site-specific liming helps increase efficiency in agricultural production. For adequate determination of the lime demand, a combination of apparent soil electrical conductivity (ECa) and topsoil pH can be used. Here, it was hypothesized that this can also be done at low-input level. Field measurements using the EM38 MK I (Geonics, Canada) were conducted on three experimental sites in north Germany in 2011. The topsoil pH was measured based on two approaches: on the field using a handheld pH meter (Spectrum-Technologies Ltd., Bridgend, UK) with a flat electrode (in situ), and in the lab using standard equipment (ex situ). Both soil ECa (0.4-35.9 mS m-1) and pH (5.13-7.41) were heterogeneously distributed across the sites. The same was true of the lime demand (-1.35-4.18 Mg ha-1). There was a significant correlation between in situ and ex situ determined topsoil pH (r = 0.89; p < 0.0001). This correlation was further improved through non-linear regression (r = 0.92; p < 0.0001). Thus, in situ topsoil pH was found suitable for map-overlay with ECa to determine the site-specific lime demand. Consequently, the hypothesis could be confirmed: The combined use of data from EM38 and handheld pH meters is a promising low-input approach that may help implement site-specific liming in developing countries.

12.
Eur J Agron ; 105: 176-188, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31007524

RESUMO

The management of optimal soil pH is fundamental to sustainable crop production. Understanding the lime requirement for arable crops has developed gradually over the last several decades. The aim of this study was to examine the yield-pH relationship for a range of arable crops to understand their response to liming, based on the Long-Term Liming experiments established in 1962 at Rothamsted Research, UK. The main treatments of four different rates of lime and, therefore, four distinctly different soil pH levels were maintained for 35 years at two sites (Rothamsted and Woburn). The pH ranged from 4.4 to 8.0. The lime response was tested on the following crops: spring barley, spring oats, spring beans, spring lupins, winter lupins, potatoes, linseed, winter oilseed rape, winter triticale and winter wheat. Relative yield (RY) was used for non-linear regression analysis to detect site, year and phosphorus (P) fertiliser effects on the relationship with pH. Liming had a highly significant positive effect on soil pH, but overall there was no consistent increase or decrease in soil extractable P (Olsen) or exchangeable K. There were significant site effects detected for RY for most crops which reflect differences in the two soil types. Spring oats and potatoes had very weak responses to lime within the pH range tested. For spring barley, winter triticale, winter wheat and winter oilseed rape significant effects of P fertiliser on the yield-pH relationship were found, although the nature of effects differed between crops and sites. Findings from the Long-Term Liming experiment are invaluable in improving the fundamental understanding on the yield-pH relationship for important arable crops and this has significant implications on selecting crops for rotations. The pH at 90% RY was calculated for selected crops and the beneficial effect of fertiliser P was detected in significantly reducing the critical pH value.

13.
Ecology ; 99(10): 2363-2373, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30054902

RESUMO

Reductions in acid precipitation across North America and Europe have been linked to substantial declines of soil organic carbon (SOC) stocks in temperate forests, but the mechanisms underlying these declines remain poorly understood. As forests recover from acid precipitation, soil pH and calcium fertility are both expected to increase, and these changes in soil chemistry may drive altered SOC dynamics. Here, we performed a year-long pot experiment on acid-impacted soils to test the independent and interactive effects of increased soil pH and Ca fertility on SOC solubility, microbial activity and sugar maple (Acer saccharum) sapling growth. We found that microbial respiration and SOC solubility was strongly stimulated by increased soil pH, but only in the presence of plants. In planted pots, a soil pH increase of 0.76 units increased soil respiration by 19% in the organic soil horizon and 38% in the mineral soil horizon, whereas in unplanted pots, soil pH had no effect on microbial respiration. While increased soil pH enhanced plant-mediated heterotrophic respiration, it had no effect on plant growth. By contrast, soil Ca enrichment increased the relative growth rate of plants by 22%, but had no impact on microbial respiration. Our results suggest that, in terms of ecosystem carbon balance, losses of SOC due to increasing soil pH may offset potential gains in primary productivity due to enhanced Ca fertility as ecosystems recover from acid precipitation.


Assuntos
Carbono/análise , Solo , Cálcio , Ecossistema , Europa (Continente) , Concentração de Íons de Hidrogênio , Minerais , América do Norte
14.
J Environ Manage ; 212: 99-107, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29428658

RESUMO

One of the major environmental issues in Finland is the presence of large tracts of acid sulfate soil (ASS) landscapes along the coast. Accurately identifying the distribution of ASS sediments, and in particular soil pH, is essential for developing targeted management strategies. One approach is the use of digital soil mapping (DSM) with various ancillary information. Although electromagnetic (EM) induction data has shown potential in mapping ASS, few studies have been conducted to map the spatial distribution of pH at different depths. In this study, a DUALEM-21S was used to collect apparent soil electrical conductivity (ECa) data across a 23-ha field near Vaasa, which lies along the western coast of Finland. A quasi-3D inversion algorithm was used to calculate the estimated true electrical conductivity (σ - mS m-1). A calibration relationship was developed between σ and incubation-pH measured at various depths from topsoil (0-0.2 m), subsurface (0.2-0.4 m) and subsoil (e.g. 0.4-0.6 and 1.8-2 m) using an artificial neural network (ANN) model. The performance of the ANN model was good given the large R2 values for calibration (0.72) and validation (0.65). It was concluded that the combination of ECa data and quasi-3D inversion algorithm (in EM4Soil) was able to map the spatial distribution of incubation-pH associated within an ASS landscape. The approach has the potential to be applied across the coastal areas of Finland and elsewhere to map incubation-pH and identify active-ASS areas and thereby improve the management of these areas.


Assuntos
Imageamento Tridimensional , Solo/química , Sulfatos/análise , Monitoramento Ambiental , Finlândia , Software
15.
Mol Biol (Mosk) ; 52(4): 595-600, 2018.
Artigo em Russo | MEDLINE | ID: mdl-30113025

RESUMO

Understanding the molecular mechanisms of plant response to unfavorable conditions is necessary for the effective selection of tolerant genotypes. Earlier, using high-throughput transcriptome sequencing of flax plants after exposure to aluminum ions (Al^(3+)) and high soil acidity, we detected stress-induced alteration in the expression of several genes, including CAX3, which encodes Ca^(2+)/H^(+)-exchanger involved in calcium ion transport. Here we describe CAX3 mRNA levels in flax cultivars either tolerant (Hermes and TMP1919) or sensitive (Lira and Orshanskiy) to Al^(3+). Stress-induced increased expression of CAX3 was detected only in aluminum-tolerant flax cultivars. The product of CAX3 gene may participate in flax response to high soil acidity and high Al^(3+) concentration through Ca^(2+)-mediated intracellular regulation.


Assuntos
Antiporters/genética , Linho/genética , Proteínas de Plantas/genética , Solo/química , Ácidos/toxicidade , Alumínio/toxicidade , Linho/efeitos dos fármacos , Linho/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , RNA Mensageiro/genética , Estresse Fisiológico
16.
Rev Environ Contam Toxicol ; 243: 1-26, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28005214

RESUMO

Aluminium toxicity to crops depends on the acidity of the soil and specific plant resistance. However, it is also strongly affected by other environmental factors that have to be considered to properly evaluate the resultant effects on plants. Observed weather perturbations and predicted climate changes will increase the probability of co-occurrence of aluminium toxicity and other abiotic stresses.In this review the mechanisms of plant-aluminium interactions are shown to be influenced by soil mineral nutrients, heavy metals, organic matter, oxidative stress and drought. Described effects of aluminium toxicity include: root growth inhibition, reduction in the uptake of mineral nutrients resulting from the inhibition of transport processes through ion channels; epigenetic changes to DNA resulting in gene silencing. Complex processes occurring in the rhizosphere are highlighted, including the role of soil organic matter and aluminium detoxification by mucilage.There is a considerable research gap in the understanding of root growth in the soil environment in the presence of toxic aluminium concentrations as affected by interactions with abiotic stressors. This knowledge is important for the selection of feasible methods aimed at the reduction of negative consequences of crop production in acidic soils affected by adverse growth environment.


Assuntos
Alumínio/toxicidade , Raízes de Plantas/efeitos dos fármacos , Plantas/efeitos dos fármacos , Estresse Fisiológico , Alumínio/química , Raízes de Plantas/crescimento & desenvolvimento , Solo/química
17.
J Environ Manage ; 133: 374-7, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24412986

RESUMO

One of the most important factors limiting plant growth is soil pH. The objective of this study is to determine the effectiveness of marble waste applications on neutralization of soil acidity. Marble quarry waste (MQW) and marble cutting waste (MCW) were applied to an acid soil at different rates and their effectiveness on neutralization was evaluated by a laboratory incubation test. The results showed that soil pH increased from 4.71 to 6.36 and 6.84 by applications of MCW and MQW, respectively. It was suggested that MQW and MCW could be used as soil amendments for the neutralization of acid soils and thus the negative impact of marble wastes on the environment could be reduced.


Assuntos
Ácidos/química , Concentração de Íons de Hidrogênio , Eliminação de Resíduos , Solo/química
18.
Environ Technol ; : 1-20, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853669

RESUMO

High concentrations of ammonium, phosphate, and phenol are recognized as water pollutants that contribute to the degradation of soil acidity. In contrast, small quantities of these nutrients are essential for soil nutrient cycling and plant growth. Here, we reported composite materials comprising biochar, chitosan, ZrO, and Fe3O4, which were employed to mitigate ammonium, phosphate, and phenol contamination in water and to lessen soil acidity. Batch adsorption experiments were conducted to assess the efficacy of the adsorbents. Initially, comparative studies on the simultaneous removal of NH4, PO4, and phenol using CB (biochar), CBC (biochar + chitosan), CBCZrO (biochar + chitosan + ZrO), and CBCZrOFe3O4 (biochar + chitosan + ZrO + Fe3O4) were conducted. The results discovered that CBCZrOFe3O4 exhibited the highest removal percentage among the adsorbents (P < 0.05). Adsorption data for CBCZrOFe3O4 were well fitted to the second-order kinetic and Freundlich isotherm models, with maximum adsorption capacities of 112.65 mg/g for NH4, 94.68 mg/g for PO4 and 112.63 mg/g for phenol. Subsequently, the effect of CBCZrOFe3O4-loaded NH4, PO4, and phenol (CBCZrOFe3O4-APP) on soil acidity was studied over a 60-day incubation period. The findings showed no significant changes (P < 0.05) in soil exchangeable acidity, H+, Mg, K, and Na. However, there was a substantial increase in the soil pH, EC, available P, CEC, N-NH4, and N-NO3. A significant reduction was also observed in the available soil exchangeable Al and Fe (P < 0.05). This technique demonstrated multi-functionality in remediating water pollutants and enhancing soil acidity.

19.
Environ Sci Pollut Res Int ; 31(12): 18412-18421, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367108

RESUMO

The use of aluminium (Al) salts, particularly alum, in coagulation is a widespread and conventional treatment method for eliminating pollutants, including phosphorus (P) which can cause eutrophication, from wastewater. However, a significant challenge of this process is the substantial amount of sludge generated, necessitating proper disposal. Historically, land disposal has been a common practice, but it poses potential issues for plant life on these lands. Despite the associated drawbacks, sludge contains elevated concentrations of vital plant nutrients like P and nitrogen, presenting an opportunity for beneficial use in agriculture. Given the imminent scarcity of P fertilizers due to the eventual depletion of high-grade P ores, this review explores the potential advantages and challenges of utilizing Al sludge as a P source for plants and proposes measures for its beneficial application. One primary concern with land application of Al sludge is its high levels of soluble Al, known to be toxic to plants, particularly in acidic soils. Another issue arises from the elevated Al concentration is P fixation and subsequently reducing P uptake by plants. To address these issues, soil treatment options such as lime, gypsum, and organic matter can be employed. Additionally, modifying the coagulation process by substituting part of the Al salts with cationic organic polymers proves effective in reducing the Al content of the sludge. The gradual release of P from sludge into the soil over time proves beneficial for plants with extended growth periods.


Assuntos
Compostos de Alúmen , Esgotos , Águas Residuárias , Fertilizantes , Fósforo , Sais , Solo , Plantas
20.
Heliyon ; 10(12): e33448, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39027433

RESUMO

The Abbay River Basin faces the looming threat of extreme climate events, including prolonged droughts and erratic rainfall patterns, which can significantly affect soil health and fertility. This study aimed to explore the influence of extreme climate conditions on soil pH and exchangeable aluminum, aiming to promote sustainable agricultural practices in Ethiopia. The Africa Soil Information Service (ASIS) provided datasets on soil pH and exchangeable aluminum. The European Copernicus Climate Change Data Store was used to download historical and future datasets of extreme climatic indices from 1980 to 2010 and 2015-2050, respectively. The Coupled Model Intercomparison Project Phase 6 model ensemble was used to predict future climate impacts under three shared socioeconomic scenarios: SSP1-2.6, SSP2-4.3, and SSP5-8.5. Data extraction, quality control, and clustering were conducted before analysis, and the model was validated for its accuracy and reliability in predicting soil parameter changes. An artificial neural network model was utilized to predict the effects of extreme climate indices on soil pH and exchangeable aluminum concentrations. The model was designed to accurately and reliably predict changes in soil parameters. This study compared the changes in soil pH and aluminum concentrations using paired t tests. The model's diagnostic results indicated a significant impact of extreme climate scenarios on soil pH and exchangeable aluminum. Extreme climate factors such as heavy precipitation and cooler night time temperatures significantly contribute to soil acidification and an increase in aluminum concentration. Under the SSP1-2.6 and SSP2-4.5 emission scenarios, soil pH levels are expected to increase by 8.38 % and 3.79 %, respectively. These changes in soil pH are expected to have significant impacts on the exchangeable aluminum content in the soil, with increases of 37 % and 5.38 %, respectively, under the same emission scenarios. However, the SSP5.8 scenario predicted a 45 % increase in exchangeable aluminum and a 9.36 % decrease in soil pH. Therefore, this study significantly enhances our understanding of the influence of climate change on soil health. The development of strategies to mitigate climate change impacts on agriculture in the region must consider the effects of extreme climate indices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA