Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Tipo de estudo
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Microbiol ; 65(1): 533-542, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25705148

RESUMO

In this study, the effect of mineral fertilizer and organic manure were evaluated on soil microbial biomass, dehydrogenase activity, bacterial and fungal community structure in a long-term (33 years) field experiment. Except for the mineral nitrogen fertilizer (N) treatment, long-term fertilization greatly increased soil microbial biomass carbon (SMBC) and dehydrogenase activity. Organic manure had a significantly greater impact on SMBC and dehydrogenase activity, compared with mineral fertilizers. Bacterial and fungal community structure was analyzed by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE). Long-term fertilization increased bacterial and fungal ribotype diversity. Total soil nitrogen (TN) and phosphorus (TP), soil organic carbon (SOC) and available phosphorus (AP) had a similar level of influence on bacterial ribotypes while TN, SOC and AP had a larger influence than alkali-hydrolyzable nitrogen (AHN) on fungal ribotypes. Our results suggested that long-term P-deficiency fertilization can significantly decrease soil microbial biomass, dehydrogenase activity and bacterial diversity. N-fertilizer and SOC have an important influence on bacterial and fungal communities.

2.
Huan Jing Ke Xue ; 45(3): 1692-1701, 2024 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471881

RESUMO

In rice-vegetable rotation systems in tropical areas, a large amount of nitrate nitrogen accumulates after fertilization in the melon and vegetable season, which leads to the leaching of nitrate nitrogen and a large amount of N2O emission after the seasonal flooding of rice, which leads to nitrogen loss and intensification of the greenhouse effect. How to improve the utilization rate of nitrate nitrogen and reduce N2O emissions has become an urgent problem to be solved. Six treatments were set up [200 mg·kg-1 KNO3 (CK); 200 mg·kg-1 KNO3 + 2% biochar addition (B); 200 mg·kg-1 KNO3+1% peanut straw addition (P); 200 mg·kg-1 KNO3 + 2% biochar + 1% peanut straw addition (P+B); 200 mg·kg-1 KNO3 + 1% rice straw addition (R); 200 mg·kg-1 KNO3 + 2% biochar+1% rice straw addition (R+B)] and cultured at 25℃ for 114 d to explore the effects of organic material addition on greenhouse gas emissions and nitrogen use after flooding in high nitrate nitrogen soil. The results showed that compared with that in CK, adding straw or combining straw with biochar significantly increased soil pH (P<0.05). The B and P treatments significantly increased the cumulative N2O emissions by 41.6% and 28.5% (P<0.05), and the P+B, R, and R+B treatments significantly decreased the cumulative N2O emissions by 14.1%, 24.7%, and 36.7% (P<0.05), respectively. The addition of straw increased the net warming potential of greenhouse gases (NGWP). The addition of coir biochar significantly reduced the effect of straw on NGWP (P<0.05). The combined application of straw and biochar decreased NGWP, and P+B significantly decreased NGWP, but that with R+B was not significant (P>0.05). Adding straw or biochar significantly increased soil microbial biomass carbon (MBC) (P<0.05), and that of P+B was the highest (502.26 mg·kg-1). The combined application of straw and biochar increased soil microbial biomass nitrogen (MBN), and that of P+B was the highest. The N2O emission flux was negatively correlated with pH (P<0.01) and positively correlated with NH4+-N and NO3--N (P<0.01). The cumulative emission of N2O was negatively correlated with MBN (P<0.05). There was a significant negative correlation between NO3--N and MBN (P<0.01), indicating that the reduction in NO3--N was likely to be held by microorganisms, and the increase in the microbial hold of NO3--N also reduced N2O emission. In conclusion, the combined application of peanut straw and coconut shell biochar could significantly inhibit N2O emission and increase soil MBC and MBN, which is a reasonable measure to make full use of nitrogen fertilizer, reduce nitrogen loss, and slow down N2O emission after the season of Hainan vegetables.


Assuntos
Gases de Efeito Estufa , Oryza , Solo/química , Gases de Efeito Estufa/análise , Verduras , Agricultura/métodos , Nitratos , Nitrogênio , Óxido Nitroso/análise , Carvão Vegetal , China , Fertilizantes
3.
Front Plant Sci ; 15: 1349180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481406

RESUMO

Appropriate nitrogen (N) management system is essential for effective crop productivity and minimizing agricultural pollution. However, the underlying mechanistic understanding of how N fertilizer regulates crop yield via soil properties in soils with different fertilities remains unresolved. Here, we used a field experiment that spanned 3 cropping seasons to evaluate the grain yield (GY), aboveground biomass and N recovery efficiency (NRE) after treatment with five N fertilizer application rates (N0, N75, N112, N150, and N187) in soils with three levels of fertility. Our results indicated that the highest GY across low, moderate, and high fertility soils were 1.5 t hm-2 (N150), 4.9 t hm-2 (N187), and 5.4 t hm-2 (N112), respectively. The highest aboveground biomass and NRE were observed at N150 for all three levels of soil fertility, while only the N uptake by aboveground biomass of low and high fertility soils decreased at N187, confirming that excessive N fertilization results in a further decline in crop N uptake. The relationship between GY, NRE and N fertilizer application rates fit the unary quadratic polynomial model. To achieve a balance between grain production and environmental benefits in N fertilizer, appropriate N fertilizer rates were determined to be 97.5 kg hm-2, 140 kg hm-2 and 131 kg hm-2 for low, moderate and high fertility soils, respectively. Structural equation modeling suggested that GY was significant correlated with soil microbial biomass carbon (SMBC) and N directly in low fertility field, with SMBC directly in moderate fertility field, and via SOC and NO3 -N in high fertility field. Therefore, a soil-based management strategy for N fertilizers could enhance food security while reducing agricultural N fertilizer inputs to mitigate environmental impacts.

4.
J Environ Manage ; 128: 393-9, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23792816

RESUMO

Quantifying the carbon storage of grasslands under different management strategies can help us understand how this ecosystem responds to different land management practices. To assess the C cycle and the importance of soil microbial biomass carbon, we measured the levels of soil organic carbon, biomass carbon (above- and underground) and soil microbial biomass carbon in areas with different grazing intensities and different management strategy (fenced and unfenced) in the Qinghai-Tibetan Plateau. We also calculated the ratio of soil microbial biomass carbon to soil organic carbon as an indicator of the soil organic matter availability and quality. Results showed that degradation had significant effects on the soil organic carbon, biomass carbon and microbial biomass carbon (P < 0.05). However, fencing only had a significant effect on the non-degraded and moderately degraded grasslands (P < 0.05). We also found that the level of soil microbial biomass carbon was positively correlated with the biomass carbon and soil organic carbon. From our research, we concluded that the level of soil microbial biomass carbon was crucial to the C cycle in the alpine grasslands and that fencing may be an important management strategy for restoring lightly or moderately degraded grassland in the Qinghai-Tibetan Plateau.


Assuntos
Carbono/análise , Poaceae , Solo , Biomassa , Ecossistema , Monitoramento Ambiental , Solo/química , Microbiologia do Solo , Tibet
5.
Huan Jing Ke Xue ; 44(7): 4201-4210, 2023 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-37438317

RESUMO

Charcoal is a carbonaceous particulate matter with a highly aromatic structure produced by incomplete combustion, and it can cause persistent long-term effects on soil ecological functions. In this study, we determined soil organic carbon pools and associated enzyme activities following five years of different charcoal treatments[charcoal removal (B0), charcoal retained in situ (B1), and the addition of charcoal removed from B0(B2)] and the unburnt control (UB) in a recently harvested Pinus massoniana plantation subjected to broadcast burning. The results showed that dissolved organic carbon (DOC), microbial biomass carbon (MBC), coarse and fine particulate organic carbon (CPOC and FPOC), and recalcitrant carbon (RC) contents were significantly lower in B1 than those in UB soil (P<0.05). The MBC and FPOC contents of B2 soil were comparable to those of UB soil, which were significantly higher than those of B0 soil (P<0.001). There was no difference in MBC/TC between the B2 and UB soils, whereas MBC/TC was significantly lower in B0 than in UB soil (P<0.05). ß-glucosidase and peroxidase activities of B0, B1, and B2 soils were significantly lower than that of UB soil (P<0.01), and polyphenol oxidase activity was significantly lower in B0 and B2 soils than in UB soil (P<0.01). No significant difference in soil TC, DOC, readily oxidized carbon (ROC), CPOC, and RC content as well as associated enzyme activities was observed among the charcoal treatments (P>0.05). Redundancy analysis showed that sucrose and polyphenol oxidase were the key drivers influencing soil organic carbon fractions, accounting for 16.3% and 12.7% of the total variance, respectively. Overall, our findings indicated that fire-deposited charcoal played a positive role in enhancing soil microbial biomass carbon recovery, soil organic carbon accumulation, and stability, highlighting the importance of charcoal in the management of subtropical plantations in the future.


Assuntos
Carbono , Pinus , Carvão Vegetal , Solo , Catecol Oxidase , Matéria Orgânica Dissolvida
6.
Front Plant Sci ; 13: 998494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570887

RESUMO

Introduction: Water scarcity and seasonal drought are major constraints on agricultural development globally. Super absorbent polymer (SAP) is a good amendment that can improve soil structure, increase soil water retention, and promote crop growth even with less soil moisture. We hypothesize that long term application of SAP has a better effect on soil organic carbon, soil enzyme activity, photosynthetic characteristics, yield, and water and nitrogen use than short term application. Methods: A long term field experiment with different application rates (0 (CK), 15 (L), 30 (M), 45 (H) kg ha-1) of SAP was conducted at the Yuzhou water conservation agriculture base of the Henan Academy of Agricultural Sciences from 2011 to 2019. Results and Discussion: The results indicate that applying SAP increases > 0.25 mm aggregates and decreased<0.25 mm aggregates in the soil after one year (2011) and 9 years (2019) of application. In addition, soil organic carbon, soil microbial biomass carbon, soil sucrase and cellulase activities, soil water consumption, water consumption, net photosynthetic rate (Pn), leaf water use efficiency (LWUE) of wheat and yield, all increased after SAP application. SAP also boosts water use efficiency and nitrogen use efficiency. Correlation analyses show that SAP promotes the growth of wheat, and improves the utilization rate of soil water and nutrients by improving the soil structure and increasing soil organic carbon and microbial enzyme activity. Conclusion: Based on our research, SAP treatment at a dosage of 45 kg ha-1 is most effective and is thus recommended.

7.
Braz J Microbiol ; 42(2): 531-42, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24031665

RESUMO

The field experiments were conducted on sandy loam soil at New Delhi, during 2007 and 2008 to investigate the effect of conservation tillage, irrigation regimes (sub-optimal, optimal and supra-optimal water regimes), and integrated nutrient management (INM) practices on soil biological parameters in wheat cultivation. The conservation tillage soils has shown significant (p<0.05) increase in soil respiration (81.1%), soil microbial biomass carbon (SMBC) (104%) and soil dehydrogenase (DH) (59.2%) compared to the conventional tillage soil. Optimum water supply (3-irrigations) enhanced soil respiration over sub-optimum and supra-optimum irrigations by 13.32% and 79% respectively. Soil dehydrogenase (DH) activity in optimum water regime has also increased by 23.33% and 8.18% respectively over the other two irrigation regimes. Similarly, SMBC has also increased by 12.14% and 27.17% respectively in soil with optimum water supply compared to that of sub-optimum and supra-optimum water regime fields. The maximum increase in soil microbial activities is found when sole organic source (50% Farm Yard Manure+25% biofertilizer+25% Green Manure) has been used in combination with the conservation tillage and the optimum water supply. Study demonstrated that microbial activity could be regulated by tillage, water and nitrogen management in the soil in a sustainable manner.

8.
Front Plant Sci ; 12: 788651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35211130

RESUMO

Reductions in soil productivity and soil water retention capacity, and water scarcity during crop growth, may occur due to long-term suboptimal tillage and fertilization practices. Therefore, the application of appropriate tillage (subsoiling) and fertilization (organic fertilizer) practices is important for improving soil structure, water conservation and soil productivity. We hypothesize that subsoiling tillage combined with organic fertilizer has a better effect than subsoiling or organic fertilizer alone. A field experiment in Henan, China, has been conducted since 2011 to explore the effects of subsoiling and organic fertilizer, in combination, on winter wheat (Triticum aestivum L.) farming. We studied the effects of conventional tillage (CT), subsoiling (S), organic fertilizer (OF), and organic fertilizer combined with subsoiling (S+OF) treatments on dry matter accumulation (DM), water consumption (ET), water use efficiency (WUE) at different growth stages, yield, and water production efficiency (WPE) of winter wheat over 3 years (2016-2017, 2017-2018, 2018-2019). We also analyzed the soil structure, soil organic carbon, soil microbial biomass carbon and nitrogen, and soil enzymes in 2019. The results indicate that compared with CT, the S, OF and S+OF treatments increased the proportion of >0.25 mm aggregates, and S+OF especially led to increased soil organic carbon, soil microbial biomass carbon and nitrogen, soil enzyme activity (sucrase, cellulose, and urease). S+OF treatment was most effective in reducing ET, and increasing DM and WUE during the entire growth period of wheat. S+OF treatment also increased the total dry matter accumulation (Total DM) and total water use efficiency (total WUE) by 18.6-32.0% and 36.6-42.7%, respectively, during these 3 years. Wheat yield and WPE under S+OF treatment increased by 11.6-28.6% and 26.8-43.6%, respectively, in these 3 years. Therefore, S+OF in combination was found to be superior to S or OF alone, which in turn yielded better results than the CT.

9.
Huan Jing Ke Xue ; 42(1): 450-458, 2021 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-33372498

RESUMO

In order to investigate the response of soil respiration, soil microbial biomass carbon and nitrogen, and hydrothermal factors to the addition of biochar and straw, we used an LI-8100 soil carbon flux meter (LI-COR, Lincoln, USA) to study changes in soil respiration and microbial biomass under four treatments:conventional fertilization (CK), conventional fertilization +2.25t·hm-2 biochar-C (T1), conventional fertilizer +2.25t·hm-2 straw-C (T2), and conventional fertilizer +2.25t·hm-2 (biochar-C+straw-C), biochar-C:straw-C=1:1 (T3). The results showed that:① the addition of biochar and straw significantly increased the soil respiration rate and total CO2 emissions, with the largest increase in T3 and the smallest increase in T1. The effect of T1 on soil respiration was promoted in the early stage and later inhibited. ② The microbial biomass carbon and nitrogen and the number of functional bacterial colonies increased significantly with biochar and straw amendments. T1 had a significant promotion effect on nitrogen-fixing bacteria, while T2 had no significant effect on the number of fungi, and T3 showed a positive interaction effect. Soil respiration rates were significantly and positively related to soil microbial biomass carbon and nitrogen as well as to the number of bacteria and actinomycetes. ③ The 5 cm soil temperature of T3 significantly increased by 4.53%. The soil respiration rate and soil temperature showed a significant exponential correlation. To sum up, adding straw and biochar with equal carbon content can significantly increase the soil respiration rate and microbial biomass, and the interaction effect between biochar and straw is positive. Compared with that of the straw treatments, the application of biochar can reduce carbon mineralization to a certain extent, and the effect of carbon sequestration is better.


Assuntos
Carbono , Solo , Agricultura , Biomassa , Carvão Vegetal , Fertilizantes , Nitrogênio/análise , Respiração , Microbiologia do Solo
10.
Sci Total Environ ; 660: 1058-1069, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743903

RESUMO

Fungi are ecological drivers of carbon cycle in soils and also effectively mediate mineral nutrition for plants especially in the severely eroded Loess Plateau of China. However, factors determining variations in fungal diversity and their biogeographic patterns in this rigorously affected landscape area remain poorly understood. Therefore, we performed Illumina MiSeq high throughput sequencing of the fungal specific, internal transcribed spacer 2 (ITS2) region from 24 representative soils covering forest, grassland and agricultural lands from 8 distinct landscapes. Using this technique, we demonstrate that fungal members belonging to phylum Ascomycota dominated in all soils investigated in this study with an average relative abundance higher than 80%. High fungal richness in the Loess Plateau soils is ascribed to the retrieval of 1,822,499 quality sequences belonging to 13,533 different phylotypes. However, this richness/phylotype number decreased (from 779 to 561) with increasing longitudinal gradient through 107°39' to 109°36'. Interestingly, higher fungal diversity (in terms of presence of diverse fungal taxa) occurred as microbial biomass carbon (MBC) concentration decreased (approximately from 500 to 100mgkg-1) in soils. Variation partitioning analysis revealed that geographic distance contributed more to fungal community variation (38.3%) than soil properties (22.2%) at the landscape level (~400km). As indicated by non-metric multidimensional scaling (NMDS), among soil properties, concentrations of MBC primarily affected (significantly corrected with NMDS 1; r=0.620; p<0.01) fungal community structure in the current study. This study therefore constitutes an essential set of information and recommends usage of information on fungal community structure as a potential ecological indicator of the Loess Plateau region.


Assuntos
Carbono/metabolismo , Micobioma , Filogeografia , Microbiologia do Solo , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/metabolismo , Biodiversidade , Biomassa , China , Ecossistema , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Solo/química
11.
Ying Yong Sheng Tai Xue Bao ; 30(4): 1335-1343, 2019 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-30994296

RESUMO

To explore the characteristics of rhizosphere soil microorganisms in paddy fields with different manure nitrogen (N) input ratios at different growth stages of early and late rice in double-cropping rice system, a field experiment was conducted with five different treatments: 1) 100% N of chemical fertilizer (M1), 2) 30% N of organic matter and 70% N of chemical fertilizer (M2), 3) 50% N of organic matter and 50% N of chemical fertilizer (M3), 4) 100% N of organic matter (M4), and 5) no N fertilizer input as a control (M0). The rhizosphere soil microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial quotient (SQ) of the paddy fields were measured using the fumigation-extraction and chemical analysis methods. The results showed that the rhizosphere MBC, MBN, and SQ of the paddy fields at main different growth stages of early and late rice were increased by fertilization, which increased first and then decreased with the development of rice growth period, peaked at the heading stage, and reached the minimum value at the maturity stage. The effects of different fertilization treatments were in order of M4>M3>M2>M1>M0, with no significant difference among M2, M3 and M4, but being significantly higher than M0. Therefore, the application of organic matter, and combined application of chemical fertilizer with organic matter could significantly increase the rhizosphere MBC, MBN, and SQ of the paddy fields at early and late rice growth period, while chemical fertilizer alone had little effect.


Assuntos
Agricultura/métodos , Esterco , Microbiologia do Solo , Solo , Biomassa , Carbono/análise , Fertilizantes , Nitrogênio/análise , Oryza , Rizosfera
12.
Ying Yong Sheng Tai Xue Bao ; 30(2): 456-462, 2019 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-30915796

RESUMO

The variations of soil organic carbon and its fractions in different paddy-upland multiple cropping rotation systems were evaluated in field trials in two consecutive years. During paddy-upland multiple cropping rotations conducted over 2 years, the content of soil total organic carbon (TOC) first increased and then decreased. The content of readily oxidized organic carbon (ROC) was highest at the rice tillering stage and lowest at the mature stage. The soil microbial biomass carbon (SMBC) was highest at the tillering stage. The dissolved organic carbon (DOC) content was highest at the mature stage. The maximum and minimum differences were at the booting stage and mature stage for TOC content, at the greening stage and booting stage for ROC content, at the mature stage and the greening stage for DOC content, at the tillering stage and the greening stage for SMBC, respectively. The soil TOC and DOC contents showed the largest variations in the 'winter fallow-early rice-late rice → winter fallow-early rice-late rice' rotation. The soil ROC content showed the largest variation in the 'milk vetch-early rice-late rice → rape-peanut-late rice' rotation. The maximum variation of SMBC was in the 'vegetables-peanut/corn-late rice → milk vetch-early rice-late rice' rotation. The 'potato-maize/soybean-late rice → vegetables-peanut/corn-late rice' rotation resulted in higher soil TOC content at the booting stage. The pattern of 'milk vetch-early rice-late rice → oil rape-peanut-late rice' led to higher soil ROC contents in the early and middle growth stages of late rice. In the 'rape-peanut-late rice → potato-maize/soybean-late rice' rotation, the highest DOC contents were at the greening stage and the mature stage, and the highest SMBC were at the booting stage and the heading stage, respectively. All these diffe-rences were significant. The rank the contents of soil organic carbon fractions from highest to lowest followed the order: TOC>ROC>SMBC>DOC. The results suggested that paddy-upland multiple cropping rotation systems could increase the contents of soil organic carbon and its fractions and improve soil quality and fertility.


Assuntos
Oryza , Solo , Agricultura , Carbono , Rotação
13.
Ying Yong Sheng Tai Xue Bao ; 30(6): 1901-1910, 2019 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-31257762

RESUMO

Taking evergreen broad-leaved forest in mid-subtropical areas, and its converted Phoebe bournei, Phyllostachys heterocycla and Cunninghamia lanceolata plantations as research objects, microbial biomass carbon (MBC) and nitrogen (MBN) in the surface (0-10 cm) and deep soil layer (40-60 cm) were measured by chloroform fumigation and extraction method, with their seasonal dynamics and the relationships with soil physicochemical properties in four types of forests being investigated. The results showed that the MBC and MBN in the surface soil was the highest in the evergreen broad-leaved forest, followed by P. bournei, P. heterocycla and C. lanceolata plantations, with that in the former three being significantly higher than in C. lanceolata plantion. There was no significant difference in the MBC and MBN contents in the deep soil layer among the four types of forests, while those in surface soil were significantly higher than in the deep soil layer. The MBC and MBN contents showed obvious seasonal dynamics, with highest values in summer and lowest in winter presenting a single peak change pattern. MBC and MBN had significantly positive correlations with soil total carbon (TC), total nitrogen (TN) and temperature, but significantly negative correlation with soil bulk density. The conversion of evergreen broad-leaved forest to the three plantation resulted in lower MBC and MBN in the surface soil to some degree, with C. lanceolata plantation being the first to be affected, but little change occurred in the deep soil layer. The quantity and quality of litter, contents of TC, TN and soil temperature were the key factors driving the differences of MBC and MBN contents and their seasonal dynamics of the four types of forests.


Assuntos
Carbono , Florestas , Nitrogênio , Microbiologia do Solo , Biomassa , China , Estações do Ano , Solo
14.
Huan Jing Ke Xue ; 40(4): 1973-1980, 2019 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-31087944

RESUMO

Soil erosion affects the soil environment and exerts an important impact on the soil organic carbon distribution, deposition, conversion, and carbon dioxide emission. The soil microbial biomass carbon can respond sensitively to these changes. The soil microbial biomass carbon under erosion and sedimentation conditions was studied for the erosional slopes at five organic carbon levels at typical erosion and deposition sites in the hilly loess plateau region. Through the study of the soil microbial biomass carbon in the rainy season, the influencing factors and their degree of influence on the soil microbial biomass carbon of the slope soil under erosion-sedimentation conditions were analyzed. The results showed that ① Soil erosion lead to significant spatial and temporal differentiation in the soil temperature and humidity and the soil organic carbon in the erosion and sedimentary area on the slope, and the degree of differentiation was related to the soil organic carbon level. ② The soil microbial biomass carbon increased significantly at the end of the rainy season, with an increase of 91.08%-286.83%. The soil microbial biomass carbon content in the slope sedimentary area was higher than that of the erosion area. With increasing soil organic carbon level, the difference between the soil microbial biomass carbon content of the erosion and sedimentary area increased, and its spatial differentiation increased. ③ The soil microbial biomass carbon in the erosion and deposition areas responded differently to the soil organic carbon content, temperature, soil moisture, and other factors. Before the rainy season, the soil microbial biomass carbon was most sensitive to soil moisture changes. However, at the end of the rainy season, the soil microbial biomass carbon was most sensitive to soil temperature changes in the deposition zone. The soil microbial biomass carbon was most sensitive to the soil organic carbon in the erosion zone. Soil erosion and seasonal variation were important reasons for the spatial and temporal distribution of the soil microbial biomass carbon on the eroding slopes. The differences in the sensitivity of the soil microbial biomass carbon to the different influencing factors was mainly due to the restrictive conversion of the different factors.


Assuntos
Carbono/análise , Microbiologia do Solo , Solo , Biomassa , China , Análise Espaço-Temporal , Temperatura
15.
Ying Yong Sheng Tai Xue Bao ; 27(3): 681-687, 2016 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-29726171

RESUMO

By taking an abandoned land as control and the young (13-15 year-old), middle-age (25-27 year-old) and mature (41-43 year-old) plantations of Pinus tabuliformis as research objects, the variation characteristics and impact factors of soil microbial biomass carbon (MBC) for the P. tabuliformis plantations in 0-60 cm soil layer were studied. Results showed that the average MBC at the young, middle-age and mature plantations was 93.08, 122.64 and 191.34 mg·kg-1, respectively, which showed a significant increase with growth stage and was significantly higher than the abandoned land (42.93 mg·kg-1). The average MBC contents gradually decreased with soil depth. Compared with the abandoned land, the average MBC at the young, middle-aged and mature plantations respectively increased by 134.2%, 221.7% and 375.7% in the 0-20 cm soil layer, 101.3%, 164.3% and 337.5% in the 20-40 cm soil layer, and 103.1%, 146.2% and 303.0% in 40-60 cm soil layer. The MBC for the whole soil layer of 60 cm had a highly significant correlation with the DBH, height and root biomass of the P. tabuliformis plantation, as well as the thickness, biomass and total nitrogen of litter. Meanwhile, the MBC also showed significant correlations with soil organic carbon (SOC), total nitrogen and moisture content. Principal component analysis showed that the root biomass, litter biomass and SOC were the principal factors affecting MBC. The P. tabuliformis plantation significantly increased SOC content mainly through litter of leaf and root and improved the MBC in the growth process.


Assuntos
Biomassa , Carbono/análise , Florestas , Pinus/crescimento & desenvolvimento , Microbiologia do Solo , China , Nitrogênio/análise , Folhas de Planta , Solo/química
16.
Ying Yong Sheng Tai Xue Bao ; 27(4): 1031-1038, 2016 Apr 22.
Artigo em Chinês | MEDLINE | ID: mdl-29732756

RESUMO

Forest types have significant effects on the availability and dynamics of soil dissolved organic carbon (DOC) and dissolved organic nitrogen (DON). By now the impacts of forest types on soil DOC and DON were mainly focused on surface soil (0-10 cm). Based on the comparisons between natural forest, Phyllostachys pubescens, Castanopsis kawakamii and Cunninghamia lanceolata plantations, we investigated the effects of forest types on soil DOC and DON pools in top (0-10 cm) and deep soils (40-60 cm). Cold water, hot water and KCl solutions were used to extract soil DOC and DON from surface and deep soils. Results showed that the effects of forest types on soil DOC, DOC/TOC, DON and soil microbial biomass carbon were only significant in the surface soil. The concentrations of DOC and DON varied with extract methods and hot water extracted the largest amounts of DOC and DON, and cold water the least. Correlations among hot water, KCl and cold water extracted DOC and DON were significant, suggesting that the organic C and N released by these three solutions might be at least partly from similar pools. The concentrations of DOC and DON and DOC/TOC in surface soil under natural forest and P. pubescens were greater than under C. kawakamii and C. lanceolata. It indicated that the concentrations of DOC and DON were greater under the natural forest and P. pubescens than under the C. kawakamii and C. Lanceolata, and more beneficial to improve soil fertility.


Assuntos
Carbono/análise , Florestas , Nitrogênio/análise , Solo/química , Biomassa , China , Cunninghamia , Poaceae , Microbiologia do Solo
17.
Huan Jing Ke Xue ; 37(8): 2979-2988, 2016 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964723

RESUMO

Taking a typical drawdown area located in Wangjiagou of the Three Gorges Reservoir as the study object, four elevations 180,175,165 and 155 m were selected to explore the effect of water level change on soil microbial biomass carbon (SMBC) and microbial biomass nitrogen (SMBN). Wherein, 175,165 and 155 m elevations located in the fluctuating zone, manifested as short, medium and long-term flooding, respectively; 180 m was used as the control, located on the land and never flooded. Sampling depth in soil samples was 0-20 cm, collected once a week. The results indicated that, soil organic carbon (SOC) and total nitrogen (TN) contents at 180 m had no obvious seasonal changes, while they showed remarkable seasonal trends at 175m, which in spring and summer were significantly higher than in autumn and winter; SMBC and SMBN contents and their allocation ratio at four elevations were similar and had significant seasonal fluctuation, which were highest in autumn and lowest in summer at each elevation, indicating that in drawdown area the microbial activity and turnover rate of soil organic carbon and nitrogen were limited by the high-temperature and low-humidity soil environment in summer. Data analysis showed that, compared with the 180 m elevation, contents of SOC, TN, SMBC and microbial quotient, SMBN and its allocation proportion showed varying degrees of increase, while contents of these indexes were significantly lower than control except SMBN and its allocation proportion, meaning that compared with 180 m short and medium-term flooding was conducive to improve soil carbon, nitrogen and their turnover rate and microbial biomass, however, contents of soil carbon and nitrogen and microbial biomass carbon were significantly restricted at 155 m as soil was subjected to flooding stress, meanwhile the turnover rate of SOC was reduced. Correlation analysis implied that SMBC and SMBN had very significant negative correlation with temperature at 5 cm soil depth and pH, meaning that the two environmental factors had a strong effect on soil microbial biomass.


Assuntos
Biomassa , Carbono/análise , Nitrogênio/análise , Microbiologia do Solo , Solo/química , Altitude , China , Concentração de Íons de Hidrogênio , Estações do Ano , Temperatura
18.
Ying Yong Sheng Tai Xue Bao ; 27(9): 2747-2753, 2016 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-29732835

RESUMO

The distribution characteristics of soil organic carbon (SOC), soil dissolved organic carbon (DOC) and soil microbial biomass carbon (MBC) under different restorations were studied in Larix gmelinii plantation, Pinus sylvestris var. mongolica plantation, artificial promotion poplar-birch forest and the natural secondary poplar-birch forest restored from burned area after the severe fire of Greater Xing' an Mountains in 1987. The results showed that the variations in SOC, DOC and MBC ranged from 9.63 to 79.72 g·kg-1, from 33.21 to 186.30 mg·kg-1 and from 200.85 to 1755.63 mg·kg-1, respectively, which decreased with soil depth increasing. There was significant diffe-rence in SOC, DOC and MBC among different restorations, with the maximum carbon contents for artificial promotion poplar-birch forest, followed by L. gmelinii plantation, natural secondary poplar-birch forest and P. sylvestris var. mongolica plantation successively. The soil microbial quotient va-ried from 1.1% under P. sylvestris var. mongolica plantation to 2.3% under artificial promotion poplar-birch forest, and its vertical distributions were different in the four restoration forests. Correlation analysis indicated that MBC had a significant positive correlation with SOC and DOC, respectively. The activity of soil organic carbon in artificial promotion poplar-birch forest was higher than in other forest stands, suggesting a stronger capacity of the soil carbon cycle through natural regeneration with artificial promotion on burned area in Greater Xing'an Mountains.


Assuntos
Carbono/análise , Incêndios , Florestas , Microbiologia do Solo , Solo/química , Betula , Biomassa , Ciclo do Carbono , China , Larix , Pinus , Populus
19.
Front Microbiol ; 6: 31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25699026

RESUMO

Copper contamination on China's arable land could pose severe economic, ecological and healthy consequences in the coming decades. As the drivers in maintaining ecosystem functioning, the responses of soil microorganisms to long-term copper contamination in different soil ecosystems are still debated. This study investigated the impacts of copper gradients on soil bacterial communities in two agricultural fields with contrasting soil properties. Our results revealed consistent reduction in soil microbial biomass carbon (SMBC) with increasing copper levels in both soils, coupled by significant declines in bacterial abundance in most cases. Despite of contrasting bacterial community structures between the two soils, the bacterial diversity in the copper-contaminated soils showed considerably decreasing patterns when copper levels elevated. High-throughput sequencing revealed copper selection for major bacterial guilds, in particular, Actinobacteria showed tolerance, while Acidobacteria and Chloroflexi were highly sensitive to copper. The thresholds that bacterial communities changed sharply were 800 and 200 added copper mg kg(-1) in the fluvo-aquic soil and red soil, respectively, which were similar to the toxicity thresholds (EC50 values) characterized by SMBC. Structural equation model (SEM) analysis ascertained that the shifts of bacterial community composition and diversity were closely related with the changes of SMBC in both soils. Our results provide field-based evidence that copper contamination exhibits consistently negative impacts on soil bacterial communities, and the shifts of bacterial communities could have largely determined the variations of the microbial biomass.

20.
Braz. j. microbiol ; 42(2): 531-542, Apr.-June 2011. tab
Artigo em Inglês | LILACS | ID: lil-590000

RESUMO

The field experiments were conducted on sandy loam soil at New Delhi, during 2007 and 2008 to investigate the effect of conservation tillage, irrigation regimes (sub-optimal, optimal and supra-optimal water regimes), and integrated nutrient management (INM) practices on soil biological parameters in wheat cultivation. The conservation tillage soils has shown significant (p<0.05) increase in soil respiration (81.1 percent), soil microbial biomass carbon (SMBC) (104 percent) and soil dehydrogenase (DH) (59.2 percent) compared to the conventional tillage soil. Optimum water supply (3-irrigations) enhanced soil respiration over sub-optimum and supra-optimum irrigations by 13.32 percent and 79 percent respectively. Soil dehydrogenase (DH) activity in optimum water regime has also increased by 23.33 percent and 8.18 percent respectively over the other two irrigation regimes. Similarly, SMBC has also increased by 12.14 percent and 27.17 percent respectively in soil with optimum water supply compared to that of sub-optimum and supra-optimum water regime fields. The maximum increase in soil microbial activities is found when sole organic source (50 percent Farm Yard Manure+25 percent biofertilizer+25 percent Green Manure) has been used in combination with the conservation tillage and the optimum water supply. Study demonstrated that microbial activity could be regulated by tillage, water and nitrogen management in the soil in a sustainable manner.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA