Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(24): 9958-9963, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36511687

RESUMO

Single-crystal nanowires are of broad interest for applications in nanotechnology. However, such wires are subject to both the Rayleigh-Plateau instability and an ovulation process that are expected to lead to their break up into particle arrays. Single crystal Ru nanowires were fabricated with axes lying along different crystallographic orientations. Wires bound by equilibrium facets along their length did not break up through either a Rayleigh-Plateau or ovulation process, while wires with other orientations broke up through a combination of both. Mechanistic insight is provided using a level-set simulation that accounts for strongly anisotropic surface energies, providing a framework for design of morphologically stable nanostructures.

2.
Nanotechnology ; 33(23)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35240581

RESUMO

Formation of Au, Pt, and bimetallic Au-Pt nanostructures by thermal dewetting of single-layer Au, Pt and bilayer Au-Pt thin films on Si substrates was systematically studied. The solid-state dewetting of both single-layer and bilayer metallic films was shown to go through heterogeneous void initiation followed by void growth via capillary agglomeration. For the single-layer of Au and Pt films, the void growth started at a temperature right above the Hüttig temperature, at which the atoms at the surface or at defects become mobile. Uniformly distributed Au (7 ± 1 nm to 33 ± 8 nm) and Pt (7 ± 1 nm) NPs with monodispersed size distributions were produced from complete dewetting achieved for thinner 1.7-5.5 nm thick Au and 1.4 nm thick Pt films, respectively. The NP size is strongly dependent on the initial thin film thickness, but less so on temperature and time. Thermal dewetting of Au-Pt bilayer films resulted in partial dewetting only, forming isolated nano-islands or large particles, regardless of sputtering order and total thin film thickness. The increased resistance to thermal dewetting shown in the Au-Pt bilayer films as compared to the individual Au or Pt layer is a reflection of the stabilizing effect that occurs upon adding Pt to Au in the bimetallic system. Energy dispersive x-ray spectroscopic analysis showed that the two metals in the bilayer films broke up together instead of dewetting individually. According to the x-ray diffraction analysis, the produced Au-Pt nanostructures are phase-segregated, consisting of an Au-rich phase and a Pt-rich phase.

3.
Nanotechnology ; 32(33)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-33962401

RESUMO

Two different dewetting methods, namely pulsed laser-induced dewetting (PLiD)-a liquid-state dewetting process and thermal dewetting (TD)-a solid-state dewetting process, have been systematically explored for Ag thin films (1.9-19.8 nm) on Si substrates for the fabrication of Ag nanoparticles (NPs) and the understanding of dewetting mechanisms. The effect of laser fluence and irradiation time in PLiD and temperature and duration in TD were investigated. A comparison of the produced Ag NP size distributions using the two methods of PLiD and TD has shown that both produce Ag NPs of similar size with better size uniformity for thinner films (<6 nm), whereas TD produced bigger Ag NPs for thicker films (≥8-10 nm) as compared to PLiD. As the film thickness increases, the Ag NP size distributions from both PLiD and TD show a deviation from the unimodal distributions, leading to a bimodal distribution. The PLiD process is governed by the mechanism of nucleation and growth of holes due to the formation of many nano-islands from the Volmer-Weber growth of thin films during the sputtering process. The investigation of thickness-dependent NP size in TD leads to the understanding of void initiation due to pore nucleation at the film-substrate interface. Furthermore, the linear dependence of NP size on thickness in TD provides direct evidence of fingering instability, which leads to the branched growth of voids.

4.
Sensors (Basel) ; 21(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34770724

RESUMO

Advances in nanofabrication techniques are undoubtedly needed to obtain nanostructured magnetic materials with physical and chemical properties matching the pressing and relentless technological demands of sensors. Solid-state dewetting is known to be a low-cost and "top-down" nanofabrication technique able to induce a controlled morphological transformation of a continuous thin film into an ordered nanoparticle array. Here, magnetic Fe70Pd30 thin film with 30 nm thickness is deposited by the co-sputtering technique on a monocrystalline (MgO) or amorphous (Si3N4) substrate and, subsequently, annealed to promote the dewetting process. The different substrate properties are able to tune the activation thermal energy of the dewetting process, which can be tuned by depositing on substrates with different microstructures. In this way, it is possible to tailor the final morphology of FePd nanoparticles as observed by advanced microscopy techniques (SEM and AFM). The average size and height of the nanoparticles are in the ranges 150-300 nm and 150-200 nm, respectively. Moreover, the induced spatial confinement of magnetic materials in almost-spherical nanoparticles strongly affects the magnetic properties as observed by in-plane and out-of-plane hysteresis loops. Magnetization reversal in dewetted FePd nanoparticles is mainly characterized by a rotational mechanism leading to a slower approach to saturation and smaller value of the magnetic susceptibility than the as-deposited thin film.

5.
Sci Technol Adv Mater ; 19(1): 160-173, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29511394

RESUMO

Alloy nanoparticles (NPs) can offer a wide range of opportunities for various applications due to their composition and structure dependent properties such as multifunctionality, electronic heterogeneity, site-specific response, and multiple plasmon resonance bands. In this work, the fabrication of self-assembled PdxAg1-x NPs alloy nanostructures with distinct size, density, shape, and composition is demonstrated via the solid-state dewetting of sputtered Pd/Ag thin films on c-plane sapphire. The initial stage of bilayer dewetting exhibits the nucleation of voids, followed by the expansion of voids and cluster breakdown and finally shape transformation along with the temperature control. Bilayer composition shows a substantial influence on the dewetting such that the overall dewetting is enhanced along with the increased Ag composition, i.e. Pd0.25Ag0.75 > Pd0.5Ag0.5 > Pd0.75Ag0.25. On the other hand, the size and density of NPs can be efficiently controlled by varying the initial thickness of bilayers. Reflectance peaks in UV and near-infrared (NIR) regions and a wide absorption band in the visible region arisen from the surface plasmon resonance are observed in reflectance spectra. The peak intensity depends on the composition of PdxAg1-x NPs and the NIR peaks gradually blue-shift with the size decrement.

6.
Small ; 12(44): 6115-6123, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27717242

RESUMO

Thin film dewetting can be efficiently exploited for the implementation of functionalized surfaces over very large scales. Although the formation of sub-micrometer sized crystals via solid-state dewetting represents a viable method for the fabrication of quantum dots and optical meta-surfaces, there are several limitations related to the intrinsic features of dewetting in a crystalline medium. Disordered spatial organization, size, and shape fluctuations are relevant issues not properly addressed so far. This study reports on the deterministic nucleation and precise positioning of Si- and SiGe-based nanocrystals by templated solid-state dewetting of thin silicon films. The dewetting dynamics is guided by pattern size and shape taking full control over number, size, shape, and relative position of the particles (islands dimensions and relative distances are in the hundreds nm range and fluctuate ≈11% for the volumes and ≈5% for the positioning).

7.
ACS Appl Mater Interfaces ; 15(6): 8653-8665, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36720004

RESUMO

Preparing and exploiting phase-change materials in the nanoscale form is an ongoing challenge for advanced material research. A common lasting obstacle is preserving the desired functionality present in the bulk form. Here, we present self-assembly routes of metamagnetic FeRh nanoislands with tunable sizes and shapes. While the phase transition between antiferromagnetic and ferromagnetic orders is largely suppressed in nanoislands formed on oxide substrates via thermodynamic nucleation, we find that nanomagnet arrays formed through solid-state dewetting keep their metamagnetic character. This behavior is strongly dependent on the resulting crystal faceting of the nanoislands, which is characteristic of each assembly route. Comparing the calculated surface energies for each magnetic phase of the nanoislands reveals that metamagnetism can be suppressed or allowed by specific geometrical configurations of the facets. Furthermore, we find that spatial confinement leads to very pronounced supercooling and the absence of phase separation in the nanoislands. Finally, the supported nanomagnets are chemically etched away from the substrates to inspect the phase transition properties of self-standing nanoparticles. We demonstrate that solid-state dewetting is a feasible and scalable way to obtain supported and free-standing FeRh nanomagnets with preserved metamagnetism.

8.
Adv Mater ; 35(11): e2200902, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36479741

RESUMO

Integration of plasmonic nanostructures with fiber-optics-based neural probes enables label-free detection of molecular fingerprints via surface-enhanced Raman spectroscopy (SERS), and it represents a fascinating technological horizon to investigate brain function. However, developing neuroplasmonic probes that can interface with deep brain regions with minimal invasiveness while providing the sensitivity to detect biomolecular signatures in a physiological environment is challenging, in particular because the same waveguide must be employed for both delivering excitation light and collecting the resulting scattered photons. Here, a SERS-active neural probe based on a tapered optical fiber (TF) decorated with gold nanoislands (NIs) that can detect neurotransmitters down to the micromolar range is presented. To do this, a novel, nonplanar repeated dewetting technique to fabricate gold NIs with sub-10 nm gaps, uniformly distributed on the wide (square millimeter scale in surface area), highly curved surface of TF is developed. It is experimentally and numerically shown that the amplified broadband near-field enhancement of the high-density NIs layer allows for achieving a limit of detection in aqueous solution of 10-7  m for rhodamine 6G and 10-5  m for serotonin and dopamine through SERS at near-infrared wavelengths. The NIs-TF technology is envisioned as a first step toward the unexplored frontier of in vivo label-free plasmonic neural interfaces.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Fibras Ópticas , Ouro/química , Análise Espectral Raman/métodos , Nanoestruturas/química , Neurotransmissores , Nanopartículas Metálicas/química
9.
J Phys Condens Matter ; 35(32)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37130524

RESUMO

The growth of the metallic nanoparticles (NPs) on the solid substrate with the desired shape and size is a critical issue for application of these NPs in solid-state devices. Solid state dewetting (SSD) technique is simple, low cost and can be used to fabricate the metallic NPs with control on the shape and size on different substrates. In this work, silver NPs (Ag NPs) were grown on corning glass substrate by SSD of silver precursor thin film deposited at different substrate temperatures by RF sputtering. The influence of the substrate temperature on the growth of Ag NPs and their several properties like localized surface plasmon resonance (LSPR), photoluminescence (PL), and Raman spectroscopy is studied. The size of the NPs was found to vary from 25 nm to 70 nm with the variation in substrate temperature from room temperature (RT) to400∘C. For the RT films, the LSPR peak position of Ag NPs is around 474 nm. A red shift in LSPR peak for films deposited at higher temperature is observed due to change in the particle size and interparticle separation. Photoluminescence spectra suggests the presence of two photoluminescence bands at 436 and 474 nm corresponding to Ag NPs radiative interband transition and LSPR band. An intense Raman peak was observed at 1587 cm-1. Enhancement in PL peak intensity and Raman peak intensity is found to be in accordance with the LSPR of Ag NPs.

10.
Materials (Basel) ; 16(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36614431

RESUMO

In this work, the process of solid-state dewetting in FePd thin films and its influence on structural transformation and magnetic properties is presented. The morphology, structure and magnetic properties of the FePd system subjected to annealing at 600 °C for different times were studied. The analysis showed a strong correlation between the dewetting process and various physical phenomena. In particular, the transition between the A1 phase and L10 phase is strongly influenced by and inextricably connected with solid-state dewetting. Major changes were observed when the film lost its continuity, including a fast growth of the L10 phase, changes in the magnetization reversal behavior or the induction of magnetic spring-like behavior.

11.
Nanomaterials (Basel) ; 12(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35214946

RESUMO

Silver nanoparticles (NPs) on glass substrates were obtained by a solid-state thermal dewetting (SSD) process using vacuum-evaporated-silver precursor layers. An exhaustive investigation of the morphological, structural, and surface chemistry properties by systematically controlling the precursor film thickness, annealing temperature, and time was conducted. Thin silver films with thicknesses of 40 and 80 nm were deposited and annealed in air by applying a combined heat-up+constant temperature-time program. Temperatures from 300 to 500 °C and times from 0 to 50 min were assayed. SSD promoted the morphological modification of the films, leading to the Ag NPs having a discrete structure. The size, shape, surface density, and inter-nanoparticle distance of the nanoparticles depended on the initial film thickness, annealing temperature, and time, exhibiting a cubic silver structure with a (111) preferred crystallographic orientation. The prepared NPs were found to be highly enriched in the Ag{111}/Ag{110}/Ag{100} equilibrium facets. SSD not only promotes NP formation but also promotes the partial oxidation from Ag to AgO at the surface level. AgO was detected on the surface around the nanoparticles synthesized at 500 °C. Overall, a broad framework has been established that connects process factors to distinguish resultant Ag NP features in order to develop unique silver nanoparticles for specific applications.

12.
ACS Appl Mater Interfaces ; 13(9): 11385-11395, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33590763

RESUMO

Solid-state dewetting (SSD) on patterned substrates is a straightforward method for fabricating ordered arrays of metallic nanoparticles on surfaces. However, a drawback of this procedure is that the patterning of substrates usually requires time-consuming and expensive two-dimensional (2D) fabrication methods. Nanostructured thin films deposited by oblique angle deposition (OAD) present at the surface a form of stochastically arranged periodic bundles of nanocolumns that might act as a patterned template for fabricating arrays of nanoparticles by SSD. In this work, we explore this concept and investigate the effect of three different types of OAD SiO2 thin films on the SSD of Au deposited on their surface. We demonstrate that the size and spatial distribution of the particles can be tailored through the surface morphology of these OAD film substrates. It has been found that the SSD of the evaporated Au layer gives rise to a bimodal size distribution of particles. A majority of them appeared as mesoparticles with sizes ≳100 nm and the rest as nanoparticles with ∼10 nm, respectively, located either on top of the nanocolumns following their lateral distribution (i.e., resulting from a patterning effect) or incorporated inside the open mesopores existing among them. Moreover, on the SiO2-OAD thin films where interconnected nanocolumnar bundles arrange in the form of discrete motifs, the patterning effect gave rise to the formation of approximately one Au mesoparticle per motif, which is one of the assets of patterned SSD. The morphological, optical (i.e., plasmon resonance), and crystalline structural characteristics of Au mesoparticles suggest that the interplay between a discontinuous nanocolumnar surface acting as a template and the poor adhesion of Au onto SiO2 are key factors for the observed template effect controlling the SSD on the surface of OAD thin films.

13.
ACS Appl Mater Interfaces ; 12(34): 38211-38221, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32706239

RESUMO

We investigate the co-catalytic activity of PtCu alloy nanoparticles for photocatalytic H2 evolution from methanol-water solutions. To produce the photocatalysts, a few-nanometer-thick Pt-Cu bilayers are deposited on anodic TiO2 nanocavity arrays and converted by solid-state dewetting via a suitable thermal treatment into bimetallic PtCu nanoparticles. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results prove the formation of PtCu nanoalloys that carry a shell of surface oxides. X-ray absorption near-edge structure (XANES) data support Pt and Cu alloying and indicate the presence of lattice disorder in the PtCu nanoparticles. The PtCu co-catalyst on TiO2 shows a synergistic activity enhancement and a significantly higher activity toward photocatalytic H2 evolution than Pt- or Cu-TiO2. We propose the enhanced activity to be due to Pt-Cu electronic interactions, where Cu increases the electron density on Pt, favoring a more efficient electron transfer for H2 evolution. In addition, Cu can further promote the photoactivity by providing additional surface catalytic sites for hydrogen recombination. Remarkably, when increasing the methanol concentration up to 50 vol % in the reaction phase, we observe for PtCu-TiO2 a steeper activity increase compared to Pt-TiO2. A further increase in methanol concentration (up to 80 vol %) causes for Pt-TiO2 a clear activity decay, while PtCu-TiO2 still maintains a high level of activity. This suggests improved robustness of PtCu nanoalloys against poisoning from methanol oxidation products such as CO.

14.
Nanomaterials (Basel) ; 10(12)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348747

RESUMO

We report on the dewetting process, in a high vacuum environment, of amorphous Ge thin films on SiO2/Si (001). A detailed insight of the dewetting is obtained by in situ reflection high-energy electron diffraction and ex situ scanning electron microscopy. These characterizations show that the amorphous Ge films dewet into Ge crystalline nano-islands with dynamics dominated by crystallization of the amorphous material into crystalline nano-seeds and material transport at Ge islands. Surface energy minimization determines the dewetting process of crystalline Ge and controls the final stages of the process. At very high temperatures, coarsening of the island size distribution is observed.

15.
Nanoscale Res Lett ; 14(1): 332, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31650295

RESUMO

Multi-metallic alloy nanoparticles (NPs) can offer a promising route for the integration of multi-functional elements by the adaptation of advantageous individual NP properties and thus can exhibit the multi-functional dynamic properties arisen from the electronic heterogeneity as well as configurational diversity. The integration of Pt-based metallic alloy NPs are imperative in the catalytic, sensing, and energy applications; however, it usually suffers from the difficulty in the fabrication of morphologically well-structured and elementally well-alloyed NPs, which yields poor plasmonic responses. In this work, the improved morphological and localized surface plasmon resonance (LSPR) properties of fully alloyed bimetallic AgPt and monometallic Pt NPs are demonstrated on sapphire (0001) via the one-step solid-state dewetting (SSD) of the Ag/Pt bilayers. In a sharp contrast to the previous studies of pure Pt NPs, the surface morphology of the resulting AgPt and Pt NPs in this work are significantly improved such that they possess larger size, increased interparticle gaps, and improved uniformity. The intermixing of Ag and Pt atoms, AgPt alloy formation, and concurrent sublimation of Ag atoms plays the major roles in the fabrication of bimetallic AgPt and monometallic Pt NPs along with the enhanced global diffusion and energy minimization of NP system. The fabricated AgPt and Pt NPs show much-enhanced LSPR responses as compared to the pure Pt NPs in the previous studies, and the excitation of dipolar, quadrupolar, multipolar and higher-order resonance modes is realized depending upon the size, configuration, and elemental compositions. The LSPR peaks demonstrate drastic alteration along with the evolution of AgPt and Pt NPs, i.e., the resonance peaks are shifted and enhanced by the variation of size and Ag content.

16.
J Biomed Opt ; 24(3): 1-6, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30873763

RESUMO

We report a fiber-optic plasmonic probe with nanogap-rich gold nanoislands for on-site surface-enhanced Raman spectroscopy (SERS). The plasmonic probe features nanogap-rich Au nanoislands on the top surface of a single multimode fiber. Au nanoislands were monolithically fabricated using repeated solid-state dewetting of thermally evaporated Au thin film. The plasmonic probe shows 7.8 × 106 in SERS enhancement factor and 100 nM in limit-of-detection for crystal violet under both the excitation of laser light and the collection of SERS signals through the optical fiber. The fiber-through measurement also demonstrates the label-free SERS detection of folic acid at micromolar level. The plasmonic probe can provide a tool for on-site and in vivo SERS applications.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Ouro/química , Nanoestruturas/química , Nanotecnologia/métodos , Análise Espectral Raman/instrumentação , Desenho de Equipamento , Ácido Fólico/análise , Limite de Detecção , Nanotecnologia/instrumentação , Processamento de Sinais Assistido por Computador , Análise Espectral Raman/métodos
17.
Nanomaterials (Basel) ; 9(6)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159339

RESUMO

In this paper, the modified solid-state dewetting (MSSD) of well-defined and various uniform Pt nanostructures is demonstrated by the auxiliary diffusion enhancement. The MSSD utilizes the introduction of metallic indium (In) layers with high diffusivity in between sapphire and platinum (Pt) layer, through which the global diffusion and dewetting of metallic atoms can be significantly enhanced. Subsequently, the In atoms can be sublimated from the NP matrix, resulting in the formation of pure Pt NPs. By the systematic control of In and Pt bi-layer thickness, various areal density, size and configuration of Pt NPs are demonstrated. The In2 nm / Pt2 nm bilayers establish very small and highly dense NPs throughout the temperature range due to the early maturation of growth. Intermediate size of NPs is demonstrated with the In45 nm / Pt15 nm bilayers with the much improved interparticle spacings by annealing between 650 and 900 oC for 450 s. Finally, the In30 nm / Pt30 nm bilayers demonstrate the widely connected network-like nanostructures. In addition, the finite difference time domain (FDTD) simulation is employed to exploit the local electric field distributions at resonance wavelengths. The dewetting characteristics of In/Pt bilayers is systematically controlled by the modifications of layer thickness and annealing temperature and is systematically described based on the diffusion of atoms, Rayleigh instability and surface energy minimization mechanism. The optical properties demonstrate dynamic and widely tunable localized surface plasmon resonance (LSPR) responses depending upon the various surface morphologies of Pt nanostructures.

18.
Nanoscale Res Lett ; 13(1): 151, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29767305

RESUMO

In this work, the evolution of PdAg and PdAuAg alloy nanostructures is demonstrated on sapphire (0001) via the solid-state dewetting of multi-metallic thin films. Various surface configurations, size, and arrangements of bi- and tri-metallic alloy nanostructures are fabricated as a function of annealing temperature, annealing duration, film thickness, and deposition arrangements such as bi-layers (Pd/Ag), tri-layers (Pd/Au/Ag), and multi-layers (Pd/Au/Ag × 5). Specifically, the tri-layers film shows the gradual evolution of over-grown NPs, voids, wiggly nanostructures, and isolated PdAuAg alloy nanoparticles (NPs) along with the increased annealing temperature. In contrast, the multi-layers film with same thickness show the enhanced dewetting rate, which results in the formation of voids at relatively lower temperature, wider spacing, and structural regularity of alloy NPs at higher temperature. The dewetting enhancement is attributed to the increased number of interfaces and reduced individual layer thickness, which aid the inter-diffusion process at the initial stage. In addition, the time evolution of the Pd150 nm/Ag80 nm bi-layer films at constant temperature show the wiggly-connected and isolated PdAg alloy NPs. The overall evolution of alloy NPs is discussed based on the solid-state dewetting mechanism in conjunction with the diffusion, inter-diffusion, alloying, sublimation, Rayleigh instability, and surface energy minimization. Depending upon their surface morphologies, the bi- and tri-metallic alloy nanostructures exhibit the dynamic reflectance spectra, which show the formation of dipolar (above 700 nm) and quadrupolar resonance peaks (~ 380 nm) and wide dips in the visible region as correlated to the localized surface plasmon resonance (LSPR) effect. An absorption dip is readily shifted from ~ 510 to ~ 475 nm along with the decreased average size of alloy nanostructures.

19.
ACS Appl Mater Interfaces ; 9(42): 37154-37159, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28949500

RESUMO

Unlike monometallic materials, bimetallic plasmonic materials offer extensive benefits such as broadband tuning capability or high environmental stability. Here we report a broad range tuning of plasmon resonance of alloyed nanoislands by using solid-state dewetting of gold and silver bilayer thin films. Thermal dewetting after successive thermal evaporation of thin metal double-layer films readily forms AuAg-alloyed nanoislands with a precise composition ratio. The complete miscibility of alloyed nanoislands results in programmable tuning of plasmon resonance wavelength in a broadband visible range. Such extraordinary tuning capability opens up a new direction for plasmonic enhancement in biophotonic applications such as surface-enhanced Raman scattering or plasmon-enhanced fluorescence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA