RESUMO
Brain metastasis is considered the most common brain tumor. They arise from different primary cancers. The most common primary tumors giving brain metastases include breast, colorectal, lung, melanoma, and renal cancer. Depending only on history, physical examination, and conventional imaging modalities makes brain tumors diagnosis difficult. Rapid and non-invasive promising modalities could diagnose and differentiate between different brain metastases without exposing the patients to unnecessary brain surgeries for biopsies. One of these promising modalities is non-coding RNAs (ncRNAs). NcRNAs can determine brain metastases' prognosis, chemoresistance, and radioresistance. It also helps us to understand the pathophysiology of brain metastases development. Additionally, ncRNAs may work as potential therapeutic targets for brain metastases treatment and prevention. Herein, we present deregulated ncRNAs in different brain metastases, including microRNAs and long non-coding RNAs (lncRNAs), such as gastric adenocarcinoma, colorectal, breast, melanoma, lung, and prostate cancer. Additionally, we focus on serum and cerebrospinal fluid (CSF) expression of these ncRNAs in patients with brain metastases compared to patients with primary tumors. Moreover, we discuss the role of ncRNAs in modulating the immune response in the brain microenvironment. More clinical studies are encouraged to assess the specificity and sensitivity of these ncRNAs.
RESUMO
Radiotherapy effect is achieved by its ability to cause DNA damage and induce apoptosis. In contrast, radiation can induce tumor cells' proliferation, invasiveness, and epithelial-mesenchymal transition (EMT). Besides developing radioresistance, this paradoxical effect of radiotherapy is considered a challenging problem in the field of radiotherapy. This highlights the importance of developing new modalities to diagnose radioresistance early to avoid any unnecessary exposure to radiation and differentiate between metastases recurrence versus post-radiation changes. Quantitative magnetic resonance imaging (MRI) techniques including diffusion-weighted imaging (DWI), dynamic susceptibility contrast (DSC), arterial spin labeling (ASL), and dynamic contrast-enhanced (DCE) represent potential biomarkers to diagnose metastases recurrence and radioresistance. In this review, we will focus on recent studies discussing the possibility of using DWI, DSC, ASL, and DCE to diagnose radioresistance and recurrence in patients with brain metastases.