Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(22): e2216304120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216558

RESUMO

The oral microbiome is critical to human health and disease, yet the role that host salivary proteins play in maintaining oral health is unclear. A highly expressed gene in human salivary glands encodes the lectin zymogen granule protein 16 homolog B (ZG16B). Despite the abundance of this protein, its interaction partners in the oral microbiome are unknown. ZG16B possesses a lectin fold, but whether it binds carbohydrates is unclear. We postulated that ZG16B would bind microbial glycans to mediate recognition of oral microbes. To this end, we developed a microbial glycan analysis probe (mGAP) strategy based on conjugating the recombinant protein to fluorescent or biotin reporter functionality. Applying the ZG16B-mGAP to dental plaque isolates revealed that ZG16B predominantly binds to a limited set of oral microbes, including Streptococcus mitis, Gemella haemolysans, and, most prominently, Streptococcus vestibularis. S. vestibularis is a commensal bacterium widely distributed in healthy individuals. ZG16B binds to S. vestibularis through the cell wall polysaccharides attached to the peptidoglycan, indicating that the protein is a lectin. ZG16B slows the growth of S. vestibularis with no cytotoxicity, suggesting that it regulates S. vestibularis abundance. The mGAP probes also revealed that ZG16B interacts with the salivary mucin MUC7. Analysis of S. vestibularis and MUC7 with ZG16B using super-resolution microscopy supports ternary complex formation that can promote microbe clustering. Together, our data suggest that ZG16B influences the compositional balance of the oral microbiome by capturing commensal microbes and regulating their growth using a mucin-assisted clearance mechanism.


Assuntos
Interações entre Hospedeiro e Microrganismos , Peptídeos e Proteínas de Sinalização Intercelular , Lectinas , Humanos , Parede Celular/metabolismo , Lectinas/metabolismo , Mucinas/metabolismo , Polissacarídeos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
2.
Front Microbiol ; 7: 811, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303392

RESUMO

LecA and LecB tetrameric lectins take part in oligosaccharide-mediated adhesion-processes of Pseudomonas aeruginosa. Glycomimetics have been designed to block these interactions. The great versatility of P. aeruginosa suggests that the range of application of these glycomimetics could be restricted to genotypes with particular lectin types. The likelihood of having genomic and genetic changes impacting LecA and LecB interactions with glycomimetics such as galactosylated and fucosylated calix[4]arene was investigated over a collection of strains from the main clades of P. aeruginosa. Lectin types were defined, and their ligand specificities were inferred. These analyses showed a loss of lecA among the PA7 clade. Genomic changes impacting lec loci were thus assessed using strains of this clade, and by making comparisons with the PAO1 genome. The lecA regions were found challenged by phage attacks and PAGI-2 (genomic island) integrations. A prophage was linked to the loss of lecA. The lecB regions were found less impacted by such rearrangements but greater lecB than lecA genetic divergences were recorded. Sixteen combinations of LecA and LecB types were observed. Amino acid variations were mapped on PAO1 crystal structures. Most significant changes were observed on LecBPA7, and found close to the fucose binding site. Glycan array analyses were performed with purified LecBPA7. LecBPA7 was found less specific for fucosylated oligosaccharides than LecBPAO1, with a preference for H type 2 rather than type 1, and Lewis(a) rather than Lewis(x). Comparison of the crystal structures of LecBPA7 and LecBPAO1 in complex with Lewis(a) showed these changes in specificity to have resulted from a modification of the water network between the lectin, galactose and GlcNAc residues. Incidence of these modifications on the interactions with calix[4]arene glycomimetics at the cell level was investigated. An aggregation test was used to establish the efficacy of these ligands. Great variations in the responses were observed. Glycomimetics directed against LecB yielded the highest numbers of aggregates for strains from all clades. The use of a PAO1ΔlecB strain confirmed a role of LecB in this aggregation phenotype. Fucosylated calix[4]arene showed the greatest potential for a use in the prevention of P. aeruginosa infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA