Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 102(7): 3425-3438, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29459999

RESUMO

Besides free sugars, sweet sorghum stalks contain cellulose and hemicellulose that can be used for biofuel production. The pretreatment of stalks without the extraction of free sugars is more complicated than typical lignocelluloses, because of the degradation of free sugars during most pretreatment processes. In this study, the bioconversion of sweet sorghum stalks into biogas and bioethanol was studied using an improved organosolv pretreatment within a biorefinery framework. The organosolv pretreatment was developed using an aqueous solution of ethanol (EtOH) and isopropanol (IPOH). The process was optimized to obtain a liquor containing free sugars with the least sugar degradations together with a highly degradable solid fraction. The liquor was subjected to anaerobic digestion for biomethane production, while the solid was used for ethanol production via simultaneous saccharification and fermentation (SSF). The most influencing pretreatment parameters, i.e., temperature, time, alcohol to water ratio, EtOH to IPOH ratio, and the presence or absence of sulfuric acid (as a catalyst), were adjusted to achieve the highest yields of bioconversion. The maximum methane and ethanol production yields of 271.2 mL CH4/g VS and 87.8% (equal to the gasoline equivalent of 0.170 and 0.241 L/kg, respectively) were achieved from the liquor and pretreated solid, respectively; however, they were obtained at different optimum conditions. Considering the biorefinery perspective, the highest gasoline equivalent of 0.249 L/kg was efficiently obtained from the whole process after pretreatment at 140 °C for 30 min using 60:20 EtOH/IPOH ratio in the presence of 1% sulfuric acid. Further analyses, including enzymatic adsorption/desorption, compositional analysis, FTIR, and SEM, were conducted to investigate the effects of this newly developed pretreatment on the substrate.


Assuntos
Biocombustíveis , Reatores Biológicos/microbiologia , Sorghum/metabolismo , 1-Propanol/metabolismo , Celulose/metabolismo , Etanol/metabolismo , Fermentação , Hidrólise , Sorghum/química , Sorghum/microbiologia
2.
Prep Biochem Biotechnol ; 48(6): 457-464, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29746795

RESUMO

This study compares different types of pretreatment methods, such as thermal pretreatment at 120 °C, autoclaving, microwaving and ultrasonication in the presence of water, dilute acid (1% H2SO4) or dilute alkali (1% NaOH) on Sorghum stalk with respect to the holocellulose and Acid Detergent/Insoluble Lignin content. Among all the methods, pretreatment with 1% NaOH along with autoclaving at 121 °C and 15 psi for 30 min was the most effective method for Sorghum stalk. Fourier Transform Infra-Red spectroscopy analysis of this pretreated biomass showed the removal of lignin and Field Emission Scanning Electron Microscope analysis displayed enhanced surface roughness. The enzymatic hydrolysis of raw and best pretreated Sorghum stalk using recombinant endo-ß-1,4-glucanase (CtCel8A) and ß-1,4-glucosidase (CtBgl1A) both from Clostridium thermocellum gave glucose yields, 22.4 mg/g raw biomass and 34 mg/g pretreated biomass, respectively, resulting in 1.5-fold increase of glucose yield after the pretreatment.


Assuntos
Produtos Agrícolas/metabolismo , Temperatura Alta , Lignina/metabolismo , Micro-Ondas , Sonicação/métodos , Sorghum/metabolismo , Biocombustíveis , Biomassa , Celulase/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Etanol/metabolismo , Hidrólise , Lignina/isolamento & purificação , Microscopia Eletrônica de Varredura , Hidróxido de Sódio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
3.
J Sci Food Agric ; 94(12): 2569-76, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24590962

RESUMO

BACKGROUND: Sorghum is an advanced biomass feedstock from which grain, sugar and stover can be used for biofuel production. Determinations of specific sugar contents in sorghum stalks help to make strategic decisions during plant breeding, processing, storage and optimization of fermentation conditions. In this study, Fourier transform near infrared (FT-NIR) spectroscopy was used as a relatively fast, low-cost, high-throughput assay to predict sucrose and glucose levels in stalks of 40 dwarf grain sorghum inbreds. RESULTS: The diffuse reflection spectra were pretreated with multiplicative scatter correction (MSC) and first-derivative Savitzy-Golay (SG-1). Calibrated models were developed by partial least squares regression (PLSR) analysis. Martens' uncertainty test was used to determine the most effective spectral region. The PLSR model for stalk sucrose content was built on 380 significant wavenumbers in the 4000-6999 cm(-1) range. The model was based on four factors and had RPD = 2.40, RMSEP = 1.77 and R(2) = 0.81. Similarly, the model for stalk glucose was built using 4000-9000 cm(-1) and six factors, with RPD = 2.45, RMSEP = 0.73 and R(2) = 0.81. CONCLUSION: PLSR models were developed based on FT-NIR spectra coupled with multivariate data analysis to provide a quick and low-cost estimate of specific sugar contents in grain sorghum stalks. This sugar information helps decision making for sorghum-based biomass processing and storage strategies.


Assuntos
Biocombustíveis , Dieta , Grão Comestível/química , Glucose/análise , Caules de Planta/química , Sorghum/química , Sacarose/análise , Biomassa , Cruzamento , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
4.
Animals (Basel) ; 14(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338059

RESUMO

The aim of the study was to examine the differences in the chemical composition, polyphenol compounds, antioxidant activity, and in vitro rumen fermentation among six varieties of sorghum stalks. The results show that maoliangnuo 1 (M1) contained a higher (p < 0.05) level of dry matter, and jinzhong 405 (J4) contained a higher (p < 0.05) level of crude protein content. The concentrations of neutral detergent fiber, acid detergent fiber, and cellulose were significantly higher (p < 0.05) in stalk jinliangnuo (JN). The levels of chlorogenic acid, homoorientin, isovitexin, vitexin, rhoifolin, genistin, quercetin, apigenin, aloe emodin, emodin, and total polyphenols were all significantly (p < 0.05) higher in maohongnuo 6 (M6) than in the other stalks. Moreover, stalk M6 contained higher (p < 0.05) levels of total antioxidant capacity (TAC), glutathione peroxidase (GPX), catalase (CAT), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging capacity. There were significant (p < 0.05) positive correlations between total polyphenols and TAC, superoxide dismutase, GPX, CAT, and DPPH free-radical scavenging capacity. The total gas production was significantly (p < 0.05) influenced by the sorghum stalk variety and incubation time. Stalk J4 displayed higher values for the (p < 0.05) immediately soluble fraction and the potential extent of gas production, while stalk M6 exhibited a significantly lower (p < 0.05) insoluble fraction level. Furthermore, stalk M6 exhibited a significantly higher level of (p < 0.05) ruminal fluid propionic acid, but its level of butyric acid and its ratio of acetic acid to propionic acid were both significantly lower (p < 0.05). Taken together, the results reported in this paper indicate that the chemical composition, polyphenol compounds, antioxidant activity, and in vitro rumen fermentation all vary greatly among different varieties of sorghum stalks.

5.
Polymers (Basel) ; 14(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215743

RESUMO

There is an increasing emphasis on the transformation of lignocellulosic biomass into versatile products. The feasibility of preparing xylooligosaccharides (XOS) by hydrolysis of sorghum stalk (SS) using organic and inorganic acids was studied. The influences of different acids (gluconic acid, acetic acid, sulfuric acid, and oxalic acid), process time and temperature on the hydrolysis of SS were explored. The findings indicated XOS yield can be maintained at a high level under different conditions with organic acid pretreatments. Optimum yield of XOS (39.4%) was obtained using sulfuric acid (pH 2.2) at 170 °C and 75 min of process time. It is suggested when reaction temperature and time were increased, both X5 and X6 are cracked into XOS with lower molecular mass such as X2, X3, and X4. Moreover, the results based on mass balance showed that up to 110 g (XOS) plus 117 g (glucose) can be recovered from 1000 g of SS. Results will give insights into establishing an efficient acid pretreatment of sorghum stalk to coproduction of XOS and glucose.

6.
Front Microbiol ; 13: 982489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992672

RESUMO

To better understand the ensiling characteristics of sorghum stalk, the dynamic changes of fermentation parameters, nutrient components and bacterial community of sorghum stalk silage were analyzed by intermittently sampling on day 0, 1, 3, 7, 14, 28, and 56 of ensiling duration. The results showed that high-moisture sorghum stalk was well preserved during ensiling fermentation, with the DM loss of 4.10% and the little difference between the nutrients of sorghum stalk before and after ensiling. The pH value of silage declined to its lowest value of 4.32 by Day 7 of ensiling, and other fermentation parameters kept steady since Day 28 of ensiling. The amplicon sequencing analysis revealed that the alpha diversity parameters of silage bacterial community including Shannon index, observed features, Pielou evenness and Faith PD gradually declined (P < 0.01) with ensiling duration. Principal coordinate analysis (PCoA) revealed that bacterial profiles of raw material would experience a succession becoming a quite different community during ensiling fermentation. Taxonomic classification revealed a total of 10 and 173 bacterial taxa at the phylum and genus level, respectively, as being detected with relative abundances higher than 0.01% and in at least half samples. LEfSe analysis revealed that 26 bacterial taxa were affected by sampling timepoint (P < 0.05 and LDA score > 4). When focusing on the dynamic trend of silage bacterial taxa, lactic acid bacteria successfully dominated in the bacterial community on Day 1 of ensiling, and the bacterial community almost came to a plateau by Day 28 of ensiling, with Lactobacillus and Leuconostoc as the dominant genera. In a word, the succession of fermentation parameters, nutrient components and bacterial community indicate a successful dominance establishment of LAB and a fast advent of fermentation plateau, suggesting that high-moisture sorghum stalk can be ensiled directly, but the pH of mature silage is a little high.

7.
Environ Technol ; : 1-14, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36476169

RESUMO

ABSTRACTThe current work focused on the intermediate pyrolysis of Bambara Groundnut Shells (BGS-G1), Sweet Sorghum Stalk (SSS), and Shea Nutshells (SNS). These feedstocks are readily available as wastes or by-products from industrial and agricultural activities. The thermo-gravimetric analysis of the biomass samples exhibited decomposition and devolatilization potentials in the temperature range of 110-650°C. The kinetic modelling resulted in the activation energy of BGS G1 being the lowest as 20.43 kJ/mol and SNS as the highest 24.89 kJ/mol among the three biomass samples. Intermediate pyrolysis was conducted in a vertical tube reactor at a temperature of 600°C, with nitrogen flow at 10 ml/min and heating rate ≥ 33.0℃/min. The yield of pyrolysis bio-oil was 38.0 ± 6.4, 44.2 ± 6, and 39.7 ± 5.2 wt.% for BGS-G1, SSS, and SNS, respectively. The HHV of bio-oil varied as 23.7 ± 1.8, 23.8 ± 1.8, to 26.5 ± 2.0 MJ/kg for BGS-G1 SSS and SNS respectively. The biochar recorded the lowest HHV for BGS-G1 as 18.8 ± 1.2 MJ/kg and the highest for SNS as 26.4 ± 1.8 MJ/kg. The FTIR of bio-oil revealed significant functional groups, and GC-MS (Gas Chromatography and Mass Spectrometry) analysis categorized the compounds in bio-oils as ketones, furans, phenolics, acids, phenols and benzene derivatives. The physicochemical analysis of the feedstocks and the products (bio-oil and biochar) showed their potential for bioenergy and biochemical (green chemicals) production.

8.
Foods ; 10(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34945638

RESUMO

Water is an important source for humankind. However, the amount of available clean water has rapidly reduced worldwide. To combat this issue, the solar-energy-driven evaporation technique is newly proposed to produce clean water. Here, biochar derived from sorghum stalk with a multi-level pore bundle structure is utilized to fabricate a solar-driven evaporator for the first time. The biochar displays rapid water transfer and low thermal conductivity (ca. 0.0405 W m-1 K-1), which is vitally important for such an application purpose. The evaporation rate and energy conversion efficiency of the solar evaporator based on carbonized sorghum stalk can achieve up to 3.173 kg m-2 h-1 and 100%, respectively, which are better than most of the previously reported biomass materials. Furthermore, the carbonized sorghum stalk also displays good resistance to salt crystallization, anti-acidic/basic, and organic pollutants by producing drinking water using seawater, acidic/basic waste water, and organic polluted water, respectively. The direct application of processed water in food production was also investigated. The present solar steam evaporator based on the carbonized sorghum stalk has the potential to create practical drinking water production by using various water sources.

9.
Biotechnol Biofuels ; 7: 53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24713041

RESUMO

BACKGROUND: Bioethanol production from biomass is becoming a hot topic internationally. Traditional static solid state fermentation (TS-SSF) for bioethanol production is similar to the traditional method of intermittent operation. The main problems of its large-scale intensive production are the low efficiency of mass and heat transfer and the high ethanol inhibition effect. In order to achieve continuous production and high conversion efficiency, gas stripping solid state fermentation (GS-SSF) for bioethanol production from sweet sorghum stalk (SSS) was systematically investigated in the present study. RESULTS: TS-SSF and GS-SSF were conducted and evaluated based on different SSS particle thicknesses under identical conditions. The ethanol yield reached 22.7 g/100 g dry SSS during GS-SSF, which was obviously higher than that during TS-SSF. The optimal initial gas stripping time, gas stripping temperature, fermentation time, and particle thickness of GS-SSF were 10 h, 35°C, 28 h, and 0.15 cm, respectively, and the corresponding ethanol stripping efficiency was 77.5%. The ethanol yield apparently increased by 30% with the particle thickness decreasing from 0.4 cm to 0.05 cm during GS-SSF. Meanwhile, the ethanol yield increased by 6% to 10% during GS-SSF compared with that during TS-SSF under the same particle thickness. The results revealed that gas stripping removed the ethanol inhibition effect and improved the mass and heat transfer efficiency, and hence strongly enhanced the solid state fermentation (SSF) performance of SSS. GS-SSF also eliminated the need for separate reactors and further simplified the bioethanol production process from SSS. As a result, a continuous conversion process of SSS and online separation of bioethanol were achieved by GS-SSF. CONCLUSIONS: SSF coupled with gas stripping meet the requirements of high yield and efficient industrial bioethanol production. It should be a novel bioconversion process for bioethanol production from SSS biomass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA