Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 60(21): 3573-3588, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31830802

RESUMO

With the launch of aerospace business, the national space agency has been working actively to improve the living environment of astronauts in outer space. Since 1980s, space food has been greatly enriched, except the differences in form, most of the foods on earth can be enjoyed in space. In this article, the space foods are classified, in general divided into five parts that include natural form food, intermediate moisture food, thermostabilized food, rehydrating food and irradiated food. New type of space food processing technology is also reviewed, including freeze-drying, irradiation sterilization, high pressure processing, microwave assisted thermal sterilization, food 3 D printing and the packaging of space food products, mainly including the packaging materials already used by the present space food system, and the feasibility analysis of some emerging high barrier packaging materials in the research stage. Finally, the review highlights the prospects of future space food system, including the development of in-orbit food preparation technology and the research of life support system.


Assuntos
Irradiação de Alimentos , Alimentos , Manipulação de Alimentos , Embalagem de Alimentos , Tecnologia de Alimentos , Liofilização
2.
Food Res Int ; 175: 113827, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129014

RESUMO

Long-term space exploration endeavors, encompassing journeys from the Earth to the Moon by 2030 and subsequent voyages from the Moon to Mars by 2040, necessitate the utilization of plant-based materials not solely for sustenance and refreshments but also the production of pharmaceuticals and repair compounds, such as plastics, among others. Nevertheless, the vital aspects of research in this domain pertain to the nutritional value and sensory perception associated with plant-based food. Prior investigations have shown altered sensory perception in space, manifested as diminished olfactory sensations and heightened taste perception (saltiness and sweetness). Nonetheless, studies concerning changes in aroma, basic tastes, and mouthfeel have been limited due to the logistical challenges associated with conducting experiments in the unique environment of space. To address this limitation, the present study employed sensory trials and biometrics from video using simulated microgravity chairs to simulate alterations in sensory perception akin to those encountered in space conditions. The findings of this study align with previous reports of changes in aroma and taste perception and contribute to the understanding of changes in the mouthfeel, heart rate, blood pressure, and emotional response that could be experienced in space environments. These experimental endeavors are critical to facilitate the advancement and development of novel plants and food materials tailored to the requirements of long-term space exploration.


Assuntos
Ausência de Peso , Sensação , Percepção Gustatória , Emoções , Biometria
3.
Life Sci Space Res (Amst) ; 37: 7-14, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37087181

RESUMO

Since the advent of space exploration missions, various space agencies have been working to improve the quality of food and nutrition for crew members. Food processing, preservation, and packaging have evolved with the advancement of technology. Most of the food available on earth can be consumed in space by changing its form. Shelf life and food acceptability can be enhanced by using suitable packaging materials. Here we review space food, which has been categorized into bite-size food, rehydratable food, thermostabilized food, intermediate moisture food, and irradiated food. Additionally, packaging materials and different packaging forms for space food are reviewed. Finally, the review highlights the challenges in space food packaging and food packaging trends of the Defence research and development organization (DRDO), the Japan aerospace exploration agency (JAXA), and the National aeronautics and space administration (NASA).


Assuntos
Embalagem de Alimentos , Voo Espacial , Estados Unidos , Alimentos , Manipulação de Alimentos , Estado Nutricional , Astronautas , United States National Aeronautics and Space Administration
4.
Life Sci Space Res (Amst) ; 36: 123-134, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36682821

RESUMO

Food and nutrition have greatly influenced the effectiveness of space exploration missions. With the development of technology, attention is now being paid more and more to preparing food for the microgravity environment, taking into account factors like nutrient density, shelf life, optimized packaging, preservations, innovations, challenges, and applications. The spectrum of food products is designed to meet the balanced nutritional requirements, reduce hazards encountered by astronauts, and utilize space in explorers during space missions. For the long duration of space missions and, consequently, for human permanence in space, it is crucial to provide humans with an adequate supply of fresh food to meet their nutritional needs. By doing this, astronauts could reduce the health risks associated with psychological stress, microgravity, and radiation exposure from space. Maintaining astronauts' health, happiness, and vitality during long-duration human-crewed missions has recently emerged as an essential and critical research area. The food they eat appears to be an important factor. For short-term space missions, astronauts' food could be brought from earth. Still, for long-term space missions to the Moon, Mars, and other distant missions, which are the current research destinations, they must find a way to eat, such as by cultivating plants or finding other means of survival. Scientists and researchers are attempting to develop novel food production technologies or systems that require minimal inputs while maximizing safe, nutritionally balanced, and delicious food outputs for long-duration space missions that could benefit people on earth. This review summarizes various aspects of space food, including evolution, innovations, technological advancements to prolong shelf life, and astronauts' problems. It also involves current research, including space foods like 3D printing and space farming for a long-term space mission.


Assuntos
Voo Espacial , Ausência de Peso , Humanos , Astronautas , Alimentos , Lua
5.
Bioelectrochemistry ; 149: 108320, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36401963

RESUMO

The current food method in space is launching prepackaged food which is costly and unsustainable. Alternatives include growing crops and microalgae single cell protein (SCP) using artificial light photosynthesis, which are energy inefficient. Prepackaged food and microalgae food were compared to microbial electrosynthesis of acetic acid (MES-AA). Since the dominant cost of a space mission is the cost of launching mass, components of a system were converted to an equivalent mass, including power, heat rejection, and volume. Three-year roundtrip crewed missions were evaluated for the International Space Station, the Moon, and Mars. The average Equivalent System Mass (ESM) of MES-AA is 1.38x and 2.84x lower than prepackaged food and microalgae SCP, respectively. The expected electricity-to-calorie conversion efficiency of MES-AA is 19.8 %, consuming 3.45 kW to fully feed five astronauts; diets would realistically include multiple foods. MES-AA has a higher energy efficiency than any currently investigated resilient food in space. MES-AA can provide diet diversity at a lower cost than customarily storing prepackaged food or growing crops in space. Producing food while contributing to closed loop life support in space can contribute to reducing global catastrophic risk and is relevant in off-grid communities, like in rural Alaska.


Assuntos
Dióxido de Carbono , Lua , Eletrodos , Eletricidade , Produtos Agrícolas , Acetatos
6.
Biotechnol Adv ; 69: 108240, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37647973

RESUMO

The development of novel, sustainable, and robust food production technologies represents one of the major pillars to address the most significant challenges humanity is going to face on earth in the upcoming decades - climate change, population growth, and resource depletion. The implementation of microfoods, i.e., foods formulated with ingredients from microbial cultivation, into the food supply chain has a huge potential to contribute towards energy-efficient and nutritious food manufacturing and represents a means to sustainably feed a growing world population. This review recapitulates and assesses the current state in the establishment and usage of gas fermenting bacteria as an innovative feedstock for protein production. In particular, we focus on the most promising representatives of this taxon: the hydrogen-oxidizing bacteria (hydrogenotrophs) and the methane-oxidizing bacteria (methanotrophs). These unicellular microorganisms can aerobically metabolize gaseous hydrogen and methane, respectively, to provide the required energy for building up cell material. A protein yield over 70% in the dry matter cell mass can be reached with no need for arable land and organic substrates making it a promising alternative to plant- and animal-based protein sources. We illuminate the holistic approach to incorporate protein extracts obtained from the cultivation of gas fermenting bacteria into microfoods. Herein, the fundamental properties of the bacteria, cultivation methods, downstream processing, and potential food applications are discussed. Moreover, this review covers existing and future challenges as well as sustainability aspects associated with the production of microbial protein through gas fermentation.


Assuntos
Bactérias , Alimentos , Animais , Fermentação , Bactérias/metabolismo , Hidrogênio/metabolismo , Tecnologia , Proteínas/metabolismo
7.
Front Plant Sci ; 14: 1210566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636122

RESUMO

Introduction: Long-duration missions in outer Space will require technologies to regenerate environmental resources such as air and water and to produce food while recycling consumables and waste. Plants are considered the most promising biological regenerators to accomplish these functions, due to their complementary relationship with humans. Plant cultivation for Space starts with small plant growth units to produce fresh food to supplement stowed food for astronauts' onboard spacecrafts and orbital platforms. The choice of crops must be based on limiting factors such as time, energy, and volume. Consequently, small, fast-growing crops are needed to grow in microgravity and to provide astronauts with fresh food rich in functional compounds. Microgreens are functional food crops recently valued for their color and flavor enhancing properties, their rich phytonutrient content and short production cycle. Candidate species of microgreens to be harvested and eaten fresh by crew members, belong to the families Brassicaceae, Asteraceae, Chenopodiaceae, Lamiaceae, Apiaceae, Amarillydaceae, Amaranthaceae, and Cucurbitaceae. Methods: In this study we developed and applied an algorithm to objectively compare numerous genotypes of microgreens intending to select those with the best productivity and phytonutrient profile for cultivation in Space. The selection process consisted of two subsequent phases. The first selection was based on literature data including 39 genotypes and 25 parameters related to growth, phytonutrients (e.g., tocopherol, phylloquinone, ascorbic acid, polyphenols, lutein, carotenoids, violaxanthin), and mineral elements. Parameters were implemented in a mathematical model with prioritization criteria to generate a ranking list of microgreens. The second phase was based on germination and cultivation tests specifically designed for this study and performed on the six top species resulting from the first ranking list. For the second selection, experimental data on phytonutrients were expressed as metabolite production per day per square meter. Results and discussion: In the final ranking list radish and savoy cabbage resulted with the highest scores based on their productivity and phytonutrient profile. Overall, the algorithm with prioritization criteria allowed us to objectively compare candidate species and obtain a ranking list based on the combination of numerous parameters measured in the different species. This method can be also adapted to new species, parameters, or re-prioritizing the parameters for specific selection purposes.

8.
Life Sci Space Res (Amst) ; 32: 79-95, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35065765

RESUMO

At present, human spaceflight is confined to low Earth orbit but, in future, will again go to the Moon and, beyond, to Mars. The provision of food during these extended missions will need to meet the special nutritional and psychosocial needs of the crew. Terrestrially grown and processed food products, currently provided for consumption by astronauts/cosmonauts, have not yet been systematically optimised to maintain their nutritional integrity and reach the shelf-life necessary for extended space voyages. Notably, space food provisions for Mars exploration will be subject to extended exposure to galactic cosmic radiation and solar particle events, the impact of which is not fully understood. In this review, we provide a summary of the existing knowledge about current space food products, the impact of radiation and storage on food composition, the identification of radiolytic biomarkers and identify gaps in our knowledge that are specific in relation to the effect of the cosmic radiation on food in space.


Assuntos
Radiação Cósmica , Voo Espacial , Astronautas , Radiação Cósmica/efeitos adversos , Humanos , Lua , Atividade Solar
9.
Front Physiol ; 12: 593226, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658900

RESUMO

Introduction: Recently, bile acids (BAs) are increasingly being considered as unique metabolic integrators and not just for the cholesterol metabolism and absorption of dietary lipids. Human BAs profiles are evolved to be individual under different environmental, dietary, and inherited factors. Variation of BAs for crewmembers from freshly prepared kitchen diets to wholly prepackaged industrial foods in a ground-based spacecraft simulator has not been clearly interpreted. Methods: Three crewmembers were confined in a docked spacecraft and supplied with 7 days periodic wholly prepackaged industrial foods for 50 days. Fecal samples were collected before entry in the spacecraft simulator and after evacuation. Determination of 16 kinds of BAs was carried out by high-performance liquid chromatography tandem mass spectrometry method. Results: Bile acids metabolism is sensitive to diet and environment transition from freshly prepared kitchen diets in the canteen to wholly prepackaged industrial foods in a ground-based spacecraft simulator, which is also specific to individuals. A significant positive relationship with a coefficient of 0.85 was found for primary BAs as chenodeoxycholic acid (CDCA) and cholic acid (CA), and a significantly negative relationship with a coefficient of -0.69 for secondary BAs as lithocholic acid (LCA) and deoxycholic acid (DCA). Discussion: The profile of BA metabolism of individuals who share the same food in the same environment appears to be unique, suggesting that the inherent ability of different individuals to adapt to diet and environment varies. Since the transition from the free diet in open space to whole prepackaged space food diet in a space station simulator causes the variations of BAs pool in an individual manner, assessment of BA metabolic profiles provides a new perspective for personalized diet design, astronaut selection and training, and space flight diet acclimatization.

10.
Plants (Basel) ; 10(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34834635

RESUMO

The realization of manned missions for space exploration requires the development of Bioregenerative Life Support Systems (BLSSs) to make human colonies self-sufficient in terms of resources. Indeed, in these systems, plants contribute to resource regeneration and food production. However, the cultivation of plants in space is influenced by ionizing radiation which can have positive, null, or negative effects on plant growth depending on intrinsic and environmental/cultivation factors. The aim of this study was to analyze the effect of high-LET (Linear Energy Transfer) ionizing radiation on seed germination and seedling development in eye bean. Dry seeds of Dolichos melanophthalmus DC. (eye bean) were irradiated with two doses (1 and 10 Gy) of C- and Ti-ions. Seedlings from irradiated seeds were compared with non-irradiated controls in terms of morpho-anatomical and biochemical traits. Results showed that the responses of eye bean plants to radiation are dose-specific and dependent on the type of ion. The information obtained from this study will be useful for evaluating the radio-resistance of eye bean seedlings, for their possible cultivation and utilization as food supplement in space environments.

11.
Nutrients ; 14(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35011072

RESUMO

This scoping review aimed to identify current evidence and gaps in the field of long-term space nutrition. Specifically, the review targeted critical nutritional needs during long-term manned missions in outer space in addition to the essential components of a sustainable space nutrition system for meeting these needs. The search phrase "space food and the survival of astronauts in long-term missions" was used to collect the initial 5432 articles from seven Chinese and seven English databases. From these articles, two independent reviewers screened titles and abstracts to identify 218 articles for full-text reviews based on three themes and 18 keyword combinations as eligibility criteria. The results suggest that it is possible to address short-term adverse environmental factors and nutritional deficiencies by adopting effective dietary measures, selecting the right types of foods and supplements, and engaging in specific sustainable food production and eating practices. However, to support self-sufficiency during long-term space exploration, the most optimal and sustainable space nutrition systems are likely to be supported primarily by fresh food production, natural unprocessed foods as diets, nutrient recycling of food scraps and cultivation systems, and the establishment of closed-loop biospheres or landscape-based space habitats as long-term life support systems.


Assuntos
Astronautas , Fenômenos Fisiológicos da Nutrição/fisiologia , Voo Espacial , Dieta , Suplementos Nutricionais , Ingestão de Energia , Conservação de Alimentos , Abastecimento de Alimentos , Humanos , Desnutrição/prevenção & controle , Estado Nutricional , Voo Espacial/tendências , Desenvolvimento Sustentável , Ausência de Peso/efeitos adversos
12.
Front Plant Sci ; 11: 656, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528506

RESUMO

The EDEN ISS greenhouse is a space-analog test facility near the German Neumayer III station in Antarctica. The facility is part of the project of the same name and was designed and built starting from March 2015 and eventually deployed in Antarctica in January 2018. The nominal operation of the greenhouse started on February 7th and continued until the 20th of November. The purpose of the facility is to enable multidisciplinary research on topics related to future plant cultivation on human space exploration missions. Research on food quality and safety, plant health monitoring, microbiology, system validation, human factors and horticultural sciences was conducted. Part of the latter is the determination of the biomass production of the different crops. The data on this topic is presented in this paper. During the first season 26 different crops were grown on the 12.5 m2 cultivation area of the greenhouse. A large number of crops were grown continuously throughout the 9 months of operation, but there were also crops that were only grown a few times for test purposes. The focus of this season was on growing lettuce, leafy greens and fresh vegetables. In total more than 268 kg of edible biomass was produced by the EDEN ISS greenhouse facility in 2018. Most of the harvest was cucumbers (67 kg), lettuces (56 kg), leafy greens (49 kg), and tomatoes (50 kg) complemented with smaller amounts of herbs (12 kg), radish (8 kg), and kohlrabi (19 kg). The environmental set points for the crops were 330-600 µmol/(m2*s) LED light, 21°C, ∼65% relative humidity, 1000 ppm and the photoperiod was 17 h per day. The overall yearly productivity of the EDEN ISS greenhouse in 2018 was 27.4 kg/m2, which is equal to 0.075 kg/(m2*d). This paper shows in detail the data on edible and inedible biomass production of each crop grown in the EDEN ISS greenhouse in Antarctica during the 2018 season.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA