Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Sensors (Basel) ; 24(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38894122

RESUMO

This paper presents a novel polarization-insensitive dual-band frequency-selective surface (FSS)-based electromagnetic shield. The miniaturized FSS unit cell consists of a modified Jerusalem crossed loop and a corner-modified square loop. These FSS elements are arranged in a co-planner configuration over a single-layer Rogers 5880 substrate and simultaneously offer effective shielding in the X- and Ku-bands. Moreover, the FSS manifests polarization-independent and angularly stable band-reject filter characteristics over various oblique angles of incidence for both the TE and TM polarizations with virtuous attenuation at both resonances. In addition, the FSS structure is modelled into an equivalent lumped circuit to better analyze the phenomenon of EM wave suppression. A finite prototype of FSS is fabricated and tested. The simulated and measured results are in good agreement, thus making it a potential candidate for RF shielding/isolation applications.

2.
Sensors (Basel) ; 24(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39065850

RESUMO

This paper describes and validates an advanced synthesis design process of Frequency-Selective Surfaces (FSSs) with elliptic band-stop responses. A systematic procedure based on the Generalized Chebyshev Function and the extracted pole technique enables control of the position of the transmission zeros and the attenuation level to obtain an equiripple rejection response. A systematic process is followed to obtain the lumped LC values of the resonator circuits extracted as poles and the impedance inverters. Then, equivalent dipoles and transmission lines are obtained to carry out the electromagnetic design at normal incidence for a linearly polarized field. The impact of the higher-order modes of the periodic structure on the electrical response of the FSS, which can be relevant due to the stringent selected specifications, has been also analyzed. A fourth-order band-stop filter with a 3 GHz bandwidth centered at 30 GHz and its attenuation at 50 dB has been designed considering three different implementations: two filters using a vacuum as a transmission line with different connection lengths and a third one using a dielectric substrate to enable its manufacturing. In order to verify the design procedure using experimental results, the third filter with printed dipoles in the dielectric substrate has been manufactured and measured, thus validating the developed process.

3.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772781

RESUMO

To address practical challenges in establishing and maintaining robust wireless connectivity such as multi-path effects, low latency, size reduction, and high data rate, we have deployed the digital beamformer, as a spatial filter, by using the hybrid antenna array at an operating frequency of 10 GHz. The proposed digital beamformer utilizes a combination of the two well-established beamforming techniques of minimum variance distortionless response (MVDR) and linearly constrained minimum variance (LCMV). In this case, the MVDR beamforming method updates weight vectors on the FPGA board, while the LCMV beamforming technique performs nullsteering in directions of interference signals in the real environment. The most well-established machine learning technique of support vector machine (SVM) for the Direction of Arrival (DoA) estimation is limited to problems with linearly-separable datasets. To overcome the aforementioned constraint, the quadratic surface support vector machine (QS-SVM) classifier with a small regularizer has been used in the proposed beamformer for the DoA estimation in addition to the two beamforming techniques of LCMV and MVDR. In this work, we have assumed that five hybrid array antennas and three sources are available, at which one of the sources transmits the signal of interest. The QS-SVM-based beamformer has been deployed on the FPGA board for spatially filtering two signals from undesired directions and passing only one of the signals from the desired direction. The simulation results have verified the strong performance of the QS-SVM-based beamformer in suppressing interference signals, which are accompanied by placing deep nulls with powers less than -10 dB in directions of interference signals, and transferring the desired signal. Furthermore, we have verified that the performance of the QS-SVM-based beamformer yields other advantages including average latency time in the order of milliseconds, performance efficiency of more than 90%, and throughput of nearly 100%.

4.
Neuroimage ; 255: 119177, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35390459

RESUMO

The spatial resolution of EEG/MEG source estimates, often described in terms of source leakage in the context of the inverse problem, poses constraints on the inferences that can be drawn from EEG/MEG source estimation results. Software packages for EEG/MEG data analysis offer a large choice of source estimation methods but few tools to experimental researchers for methods evaluation and comparison. Here, we describe a framework and tools for objective and intuitive resolution analysis of EEG/MEG source estimation based on linear systems analysis, and apply those to the most widely used distributed source estimation methods such as L2-minimum-norm estimation (L2-MNE) and linearly constrained minimum variance (LCMV) beamformers. Within this framework it is possible to define resolution metrics that define meaningful aspects of source estimation results (such as localization accuracy in terms of peak localization error, PLE, and spatial extent in terms of spatial deviation, SD) that are relevant to the task at hand and can easily be visualized. At the core of this framework is the resolution matrix, which describes the potential leakage from and into point sources (point-spread and cross-talk functions, or PSFs and CTFs, respectively). Importantly, for linear methods these functions allow generalizations to multiple sources or complex source distributions. This paper provides a tutorial-style introduction into linear EEG/MEG source estimation and resolution analysis aimed at experimental (rather than methods-oriented) researchers. We used this framework to demonstrate how L2-MNE-type as well as LCMV beamforming methods can be evaluated in practice using software tools that have only recently become available for routine use. Our novel methods comparison includes PLE and SD for a larger number of methods than in similar previous studies, such as unweighted, depth-weighted and normalized L2-MNE methods (including dSPM, sLORETA, eLORETA) and two LCMV beamformers. The results demonstrate that some methods can achieve low and even zero PLE for PSFs. However, their SD as well as both PLE and SD for CTFs are far less optimal for all methods, in particular for deep cortical areas. We hope that our paper will encourage EEG/MEG researchers to apply this approach to their own tasks at hand.


Assuntos
Eletroencefalografia , Magnetoencefalografia , Algoritmos , Encéfalo , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Humanos , Magnetoencefalografia/métodos , Software
5.
Sensors (Basel) ; 21(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502575

RESUMO

Since remote sensing images are one of the main sources for people to obtain required information, the quality of the image becomes particularly important. Nevertheless, noise often inevitably exists in the image, and the targets are usually blurred by the acquisition of the imaging system, resulting in the degradation of quality of the images. In this paper, a novel preprocessing algorithm is proposed to simultaneously smooth noise and to enhance the edges, which can improve the visual quality of remote sensing images. It consists of an improved adaptive spatial filter, which is a weighted filter integrating functions of both noise removal and edge sharpness. Its processing parameters are flexible and adjustable relative to different images. The experimental results confirm that the proposed method outperforms the existing spatial algorithms both visually and quantitatively. It can play an important role in the remote sensing field in order to achieve more information of interested targets.


Assuntos
Algoritmos , Tecnologia de Sensoriamento Remoto , Humanos
6.
Neuroimage ; 188: 145-160, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30502446

RESUMO

Oscillations are characteristic features of brain activity and have traditionally been categorized into frequency bands. Despite this categorization, brain oscillations have non-sinusoidal waveshape features, which have recently been discussed for their potential to mislead cross-frequency coupling measures. Waveshape characteristics deserve attention in their own right, as they are a direct reflection of the underlying neurophysiology and have shown to be altered in conditions such as Parkinson's disease. Here, we want to contribute to waveshape analysis in three steps: (1) While "shape" is most intuitively described in the time domain, complementary information is provided by frequency domain. In particular we show, that the bispectrum of an oscillation directly reflects waveshape properties such as differences in the steepness of its rise and decay phases, as well as differences in the duration of its crests and troughs. (2) Methods for the extraction of brain oscillations need to be chosen with care, as the ubiquitous use of bandpass filters causes waveshape distortions. We illustrate common problems and introduce a waveshape-preserving spatial filter for the purpose of waveshape analysis. (3) In an exemplary analysis of resting-state alpha rhythms, bicoherence provides evidence that shape characteristics of alpha rhythms exist on a spectrum. In addition, the bispectral view identifies significant mu rhythm anomalies in schizophrenia and suggests potential causes relating to waveshape.


Assuntos
Ritmo alfa/fisiologia , Encéfalo/fisiologia , Neurofisiologia/métodos , Esquizofrenia/fisiopatologia , Humanos
7.
Sensors (Basel) ; 19(18)2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540121

RESUMO

This paper proposes a novel design approach for a thin lens with the aim of overcoming fineness limits in the commercial millimeter wave printed circuit board (PCB) manufacturing process. The PCB manufacturing process typically does not allow the fabrication of metallic patterns with a gap and width of less than 100 µm. This hampers expanding thin lens technology to 5G commercial applications, especially when such technology is considered for 60 GHz or higher frequency, which requires a finer gap and width of metallic traces. This paper proposes that problematic process conditions can be mitigated when a lens is designed by establishing single-polarized lumped element models where larger capacitance and inductance values can be obtained for the same patch and grid unit cells. While the proposed design technique is more advantageous at higher target frequencies, a 60 GHz application and a wireless backhaul system is selected because of a limited range of frequencies that can be measured by an available vector network analyzer. The required gap or width of metallic traces can be widened significantly by using the proposed single-polarized unit cells to acquire the same in-plane capacitance or inductance. This enables the lens operating at higher-frequency under the process limits in fabricable fine traces. Finally, the effectiveness of the simulated design procedure is demonstrated by fabricating a 60 GHz thin lens that can achieve a gain enhancement of 16 dB for a 4 × 4 patch antenna array with a gain of 16.5 dBi.

8.
Sensors (Basel) ; 19(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484441

RESUMO

Passive multiple sound source localization is a challenging problem in underwater acoustics, especially for a short hydrophone array in the deep ocean. Several attempts have been made to solve this problem by applying compressive sensing (CS) techniques. In this study, one greedy algorithm in CS theory combined with a spatial filter was developed and applied to a two-source localization scenario in the deep ocean. This method facilitates localization by utilizing the greedy algorithm with a spatial filter at several iterative loops. The simulated and experimental data suggest that the proposed method provides a certain localization performance improvement over the use of the Bartlett processor and the greedy algorithm without a spatial filter. Additionally, the effects on the source localization caused by factors such as the array aperture, number of hydrophones or snapshots, and signal-to-noise ratio (SNR) are demonstrated.

9.
J Magn Reson Imaging ; 45(6): 1835-1845, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27635526

RESUMO

PURPOSE: To develop an effective method that can suppress noise in successive multiecho T2 (*)-weighted magnetic resonance (MR) brain images while preventing filtering artifacts. MATERIALS AND METHODS: For the simulation experiments, we used multiple T2 -weighted images of an anatomical brain phantom. For in vivo experiments, successive multiecho MR brain images were acquired from five healthy subjects using a multiecho gradient-recalled-echo (MGRE) sequence with a 3T MRI system. Our denoising method is a nonlinear filter whose filtering weights are determined by tissue characteristics among pixels. The similarity of the tissue characteristics is measured based on the l2 -difference between two temporal decay signals. Both numerical and subjective evaluations were performed in order to compare the effectiveness of our denoising method with those of conventional filters, including Gaussian low-pass filter (LPF), anisotropic diffusion filter (ADF), and bilateral filter. Root-mean-square error (RMSE), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were used in the numerical evaluation. Five observers, including one radiologist, assessed the image quality and rated subjective scores in the subjective evaluation. RESULTS: Our denoising method significantly improves RMSE, SNR, and CNR of numerical phantom images, and CNR of in vivo brain images in comparison with conventional filters (P < 0.005). It also receives the highest scores for structure conspicuity (8.2 to 9.4 out of 10) and naturalness (9.2 to 9.8 out of 10) among the conventional filters in the subjective evaluation. CONCLUSION: This study demonstrates that high-SNR multiple T2 (*)-contrast MR images can be obtained using our denoising method based on tissue characteristics without noticeable artifacts. Evidence level: 2 J. MAGN. RESON. IMAGING 2017;45:1835-1845.


Assuntos
Algoritmos , Artefatos , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Simulação por Computador , Meios de Contraste , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Modelos Biológicos , Modelos Estatísticos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído
10.
Sensors (Basel) ; 17(12)2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29186848

RESUMO

This work presents a new on-line adaptive filter, which is based on a similarity analysis between standard electrode locations, in order to reduce artifacts and common interferences throughout electroencephalography (EEG) signals, but preserving the useful information. Standard deviation and Concordance Correlation Coefficient (CCC) between target electrodes and its correspondent neighbor electrodes are analyzed on sliding windows to select those neighbors that are highly correlated. Afterwards, a model based on CCC is applied to provide higher values of weight to those correlated electrodes with lower similarity to the target electrode. The approach was applied to brain computer-interfaces (BCIs) based on Canonical Correlation Analysis (CCA) to recognize 40 targets of steady-state visual evoked potential (SSVEP), providing an accuracy (ACC) of 86.44 ± 2.81%. In addition, also using this approach, features of low frequency were selected in the pre-processing stage of another BCI to recognize gait planning. In this case, the recognition was significantly ( p < 0.01 ) improved for most of the subjects ( A C C ≥ 74.79 % ) , when compared with other BCIs based on Common Spatial Pattern, Filter Bank-Common Spatial Pattern, and Riemannian Geometry.

11.
Sensors (Basel) ; 16(2): 213, 2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-26861347

RESUMO

Motor imagery-based brain-computer interface (BCI) is a communication interface between an external machine and the brain. Many kinds of spatial filters are used in BCIs to enhance the electroencephalography (EEG) features related to motor imagery. The approach of channel selection, developed to reserve meaningful EEG channels, is also an important technique for the development of BCIs. However, current BCI systems require a conventional EEG machine and EEG electrodes with conductive gel to acquire multi-channel EEG signals and then transmit these EEG signals to the back-end computer to perform the approach of channel selection. This reduces the convenience of use in daily life and increases the limitations of BCI applications. In order to improve the above issues, a novel wearable channel selection-based brain-computer interface is proposed. Here, retractable comb-shaped active dry electrodes are designed to measure the EEG signals on a hairy site, without conductive gel. By the design of analog CAR spatial filters and the firmware of EEG acquisition module, the function of spatial filters could be performed without any calculation, and channel selection could be performed in the front-end device to improve the practicability of detecting motor imagery in the wearable EEG device directly or in commercial mobile phones or tablets, which may have relatively low system specifications. Finally, the performance of the proposed BCI is investigated, and the experimental results show that the proposed system is a good wearable BCI system prototype.


Assuntos
Técnicas Biossensoriais/instrumentação , Interfaces Cérebro-Computador , Eletrodos , Eletroencefalografia , Algoritmos , Encéfalo/fisiologia , Humanos
12.
J Neurophysiol ; 114(5): 2843-53, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26354317

RESUMO

Cortex-muscle coherence (CMC) reflects coupling between magnetoencephalography (MEG) and surface electromyography (sEMG), being strongest during isometric contraction but absent, for unknown reasons, in some individuals. We used a novel nonmagnetic high-density sEMG (HD-sEMG) electrode grid (36 mm × 12 mm; 60 electrodes separated by 3 mm) to study effects of sEMG recording site, electrode derivation, and rectification on the strength of CMC. Monopolar sEMG from right thenar and 306-channel whole-scalp MEG were recorded from 14 subjects during 4-min isometric thumb abduction. CMC was computed for 60 monopolar, 55 bipolar, and 32 Laplacian HD-sEMG derivations, and two derivations were computed to mimic "macroscopic" monopolar and bipolar sEMG (electrode diameter 9 mm; interelectrode distance 21 mm). With unrectified sEMG, 12 subjects showed statistically significant CMC in 91-95% of the HD-sEMG channels, with maximum coherence at ∼25 Hz. CMC was about a fifth stronger for monopolar than bipolar and Laplacian derivations. Monopolar derivations resulted in most uniform CMC distributions across the thenar and in tightest cortical source clusters in the left rolandic hand area. CMC was 19-27% stronger for HD-sEMG than for "macroscopic" monopolar or bipolar derivations. EMG rectification reduced the CMC peak by a quarter, resulted in a more uniformly distributed CMC across the thenar, and provided more tightly clustered cortical sources than unrectifed sEMGs. Moreover, it revealed CMC at ∼12 Hz. We conclude that HD-sEMG, especially with monopolar derivation, can facilitate detection of CMC and that individual muscle anatomy cannot explain the high interindividual CMC variability.


Assuntos
Eletromiografia/métodos , Magnetoencefalografia/métodos , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Adulto , Feminino , Mãos/inervação , Mãos/fisiologia , Humanos , Contração Isométrica , Masculino , Músculo Esquelético/inervação , Adulto Jovem
13.
Hum Brain Mapp ; 35(4): 1642-53, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23616402

RESUMO

Brain activation estimated from EEG and MEG data is the basis for a number of time-series analyses. In these applications, it is essential to minimize "leakage" or "cross-talk" of the estimates among brain areas. Here, we present a novel framework that allows the design of flexible cross-talk functions (DeFleCT), combining three types of constraints: (1) full separation of multiple discrete brain sources, (2) minimization of contributions from other (distributed) brain sources, and (3) minimization of the contribution from measurement noise. Our framework allows the design of novel estimators by combining knowledge about discrete sources with constraints on distributed source activity and knowledge about noise covariance. These estimators will be useful in situations where assumptions about sources of interest need to be combined with uncertain information about additional sources that may contaminate the signal (e.g. distributed sources), and for which existing methods may not yield optimal solutions. We also show how existing estimators, such as maximum-likelihood dipole estimation, L2 minimum-norm estimation, and linearly-constrained minimum variance as well as null-beamformers, can be derived as special cases from this general formalism. The performance of the resulting estimators is demonstrated for the estimation of discrete sources and regions-of-interest in simulations of combined EEG/MEG data. Our framework will be useful for EEG/MEG studies applying time-series analysis in source space as well as for the evaluation and comparison of linear estimators.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Eletroencefalografia/métodos , Magnetoencefalografia/métodos , Algoritmos , Simulação por Computador , Humanos , Funções Verossimilhança , Modelos Lineares , Modelos Neurológicos , Processamento de Sinais Assistido por Computador
14.
J Neural Eng ; 21(1)2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38277703

RESUMO

Objective.The wide detection volume of surface electromyogram (EMG) makes it prone to crosstalk, i.e. the signal from other muscles than the target one. Removing this perturbation from bipolar recordings is an important open problem for many applications.Approach.An innovative nonlinear spatio-temporal filter is developed to estimate the EMG generated by the target muscle by processing noisy signals from two bipolar channels, placed over the target and the crosstalk muscle, respectively. The filter is trained on some calibration data and then can be applied on new signals. Tests are provided in simulations (considering different thicknesses of the subcutaneous tissue, inter-electrode distances, locations of the EMG channels, force levels) and experiments (from pronator teres and flexor carpi radialis of 8 healthy subjects).Main results.The proposed filter allows to reduce the effect of crosstalk in all investigated conditions, with a statistically significant reduction of its root mean squared of about 20%, both in simulated and experimental data. Its performances are also superior to those of a blind source separation method applied to the same data.Significance.The proposed filter is simple to be applied and feasible in applications in which single bipolar channels are placed over the muscles of interest. It can be useful in many fields, such as in gait analysis, tests of myoelectric fatigue, rehabilitation with EMG biofeedback, clinical studies, prosthesis control.


Assuntos
Antebraço , Músculo Esquelético , Humanos , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Eletrodos , Biorretroalimentação Psicológica
15.
Sci Total Environ ; 843: 157053, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35780885

RESUMO

Air pollutants are major risk factors for respiratory diseases, particularly asthma, socially and spatially correlated. Many existing environment-asthma-related studies, however, have evaluated the impact of crude trends at the largest district level, which accounts only for temporal effects and may produce biased results with spatial autocorrelation. This study aimed to investigate how the spatial autocorrelation affects the air pollution effect estimations (sulfur dioxide [SO2], nitrogen dioxide [NO2], carbon monoxide [CO], and particulate matter [PM10]) on daily asthma emergency department (ED) visits in two metropolitan areas in Korea (Seoul Metropolitan Area [SMA] and Busan Metropolitan City, Ulsan Metropolitan City, Gyeongsangnamdo [BUG]). We applied eigenvector spatial filter (ESF) to the spatio-temporal model to remove spatial autocorrelation and distributed lag nonlinear model (DLNM) to explore nonlinear patterns between air pollutant concentration and lagged days on the three models including aggregated model (a temporal model), spatial model without ESF, and spatial model with ESF (both are spatio-temporal models). The effect of SO2 was not statistically significant for asthma ED visits in the aggregated model for SMA (cumulative relative risks [CRR] = 0.99, confidence intervals [CI]: 0.93-1.05), while the effect was statistically significant in the spatial model with ESF (CRR = 1.10, CI: 1.08-1.12). NO2 and CO were positively correlated to asthma ED visits in the spatial model without ESF (CRR = 0.84, CI: 0.81-0.86; 0.91, 0.89-0.94, respectively), but the spatial model with ESF showed significant risks (CRR = 1.21, CI: 1.18-1.24; 1.13, 1.11-1.16). Moreover, the spatial model with ESF successfully removed spatial autocorrelation (P-values for Moran's I 0.83-0.98) and demonstrated the highest model fit (McFadden's pseudo R2 0.42-0.43 for SMA and 0.26-0.27 for BUG) among the three models. Our findings demonstrate how ESF can be introduced into spatial correlation to remove bias and construct more reliable models.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Asma/induzido quimicamente , Asma/epidemiologia , Humanos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Fatores de Risco , Estações do Ano , Análise Espacial , Dióxido de Enxofre/análise
16.
J Neural Eng ; 19(3)2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35483331

RESUMO

Objective.Steady-state visual evoked potential (SSVEP) is an important control method of the brain-computer interface (BCI) system. The development of an efficient SSVEP feature decoding algorithm is the core issue in SSVEP-BCI. It has been proposed to use user training data to reduce the spontaneous electroencephalogram activity interference on SSVEP response, thereby improving the feature recognition accuracy of the SSVEP signal. Nevertheless, the tedious data collection process increases the mental fatigue of the user and severely affects the applicability of the BCI system.Approach.A cross-subject spatial filter transfer (CSSFT) method that transfer the existing user model with good SSVEP response to the new user test data without collecting any training data from the new user is proposed.Main results.Experimental results demonstrate that the transfer model increases the distinction of the feature discriminant coefficient between the gaze following target and the non-gaze following target and accurately identifies the wrong target in the fundamental algorithm model. The public datasets show that the CSSFT method significantly increases the recognition performance of canonical correlation analysis (CCA) and filter bank CCA. Additionally, when the data used to calculate the transfer model contains one data block only, the CSSFT method retains its effective feature recognition capabilities.Significance.The proposed method requires no tedious data calibration process for new users, provides an effective technical solution for the transfer of the cross-subject model, and has potential application value for promoting the application of the BCI system.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Algoritmos , Eletroencefalografia/métodos , Estimulação Luminosa
17.
J Neural Eng ; 19(4)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35850094

RESUMO

Objective.Steady-state visual evoked potential (SSVEP) training feature recognition algorithms utilize user training data to reduce the interference of spontaneous electroencephalogram activities on SSVEP response for improved recognition accuracy. The data collection process can be tedious, increasing the mental fatigue of users and also seriously affecting the practicality of SSVEP-based brain-computer interface (BCI) systems.Approach. As an alternative, a cross-subject spatial filter transfer (CSSFT) method to transfer an existing user data model with good SSVEP response to new user test data has been proposed. The CSSFT method uses superposition averages of data for multiple blocks of data as transfer data. However, the amplitude and pattern of brain signals are often significantly different across trials. The goal of this study was to improve superposition averaging for the CSSFT method and propose anEnsemblescheme based on ensemble learning, and anExpansionscheme based on matrix expansion.Main results. The feature recognition performance was compared for CSSFT and the proposed improved CSSFT method using two public datasets. The results demonstrated that the improved CSSFT method can significantly improve the recognition accuracy and information transmission rate of existing methods.Significance.This strategy avoids a tedious data collection process, and promotes the potential practical application of BCI systems.


Assuntos
Interfaces Cérebro-Computador , Potenciais Evocados Visuais , Algoritmos , Mapeamento Encefálico , Eletroencefalografia/métodos , Estimulação Luminosa
18.
Front Neurorobot ; 16: 855825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370596

RESUMO

Recently, the robotic arm control system based on a brain-computer interface (BCI) has been employed to help the disabilities to improve their interaction abilities without body movement. However, it's the main challenge to implement the desired task by a robotic arm in a three-dimensional (3D) space because of the instability of electroencephalogram (EEG) signals and the interference by the spontaneous EEG activities. Moreover, the free motion control of a manipulator in 3D space is a complicated operation that requires more output commands and higher accuracy for brain activity recognition. Based on the above, a steady-state visual evoked potential (SSVEP)-based synchronous BCI system with six stimulus targets was designed to realize the motion control function of the seven degrees of freedom (7-DOF) robotic arm. Meanwhile, a novel template-based method, which builds the optimized common templates (OCTs) from various subjects and learns spatial filters from the common templates and the multichannel EEG signal, was applied to enhance the SSVEP recognition accuracy, called OCT-based canonical correlation analysis (OCT-CCA). The comparison results of offline experimental based on a public benchmark dataset indicated that the proposed OCT-CCA method achieved significant improvement of detection accuracy in contrast to CCA and individual template-based CCA (IT-CCA), especially using a short data length. In the end, online experiments with five healthy subjects were implemented for achieving the manipulator real-time control system. The results showed that all five subjects can accomplish the tasks of controlling the manipulator to reach the designated position in the 3D space independently.

19.
Front Neurosci ; 16: 842420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360180

RESUMO

For the analysis of simultaneous EEG-fMRI recordings, it is vital to use effective artifact removal tools. This applies in particular to the ballistocardiogram (BCG) artifact which is difficult to remove without distorting signals of interest related to brain activity. Here, we documented the use of surrogate source models to separate the artifact-related signals from brain signals with minimal distortion of the brain activity of interest. The artifact topographies used for surrogate separation were created automatically using principal components analysis (PCA-S) or by manual selection of artifact components utilizing independent components analysis (ICA-S). Using real resting-state data from 55 subjects superimposed with simulated auditory evoked potentials (AEP), both approaches were compared with three established BCG artifact removal methods: Blind Source Separation (BSS), Optimal Basis Set (OBS), and a mixture of both (OBS-ICA). Each method was evaluated for its applicability for ERP and source analysis using the following criteria: the number of events surviving artifact threshold scans, signal-to-noise ratio (SNR), error of source localization, and signal variance explained by the dipolar model. Using these criteria, PCA-S and ICA-S fared best overall, with highly significant differences to the established methods, especially in source localization. The PCA-S approach was also applied to a single subject Berger experiment performed in the MRI scanner. Overall, the removal of BCG artifacts by the surrogate methods provides a substantial improvement for the analysis of simultaneous EEG-fMRI data compared to the established methods.

20.
Neurophotonics ; 8(1): 015004, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33598505

RESUMO

Significance: With the increasing popularity of functional near-infrared spectroscopy (fNIRS), the need to determine localization of the source and nature of the signals has grown. Aim: We compare strategies for removal of non-neural signals for a finger-thumb tapping task, which shows responses in contralateral motor cortex and a visual checkerboard viewing task that produces activity within the occipital lobe. Approach: We compare temporal regression strategies using short-channel separation to a spatial principal component (PC) filter that removes global signals present in all channels. For short-channel temporal regression, we compare non-neural signal removal using first and combined first and second PCs from a broad distribution of short channels to limited distribution on the forehead. Results: Temporal regression of non-neural information from broadly distributed short channels did not differ from forehead-only distribution. Spatial PC filtering provides results similar to short-channel separation using the temporal domain. Utilizing both first and second PCs from short channels removes additional non-neural information. Conclusions: We conclude that short-channel information in the temporal domain and spatial domain regression filtering methods remove similar non-neural components represented in scalp hemodynamics from fNIRS signals and that either technique is sufficient to remove non-neural components.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA