Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(11): 102476, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36096201

RESUMO

The accumulation of misfolded proteins is a hallmark of aging and many neurodegenerative diseases, making it important to understand how the cellular machinery recognizes and processes such proteins. A key question in this respect is whether misfolded proteins are handled in a similar way regardless of their genetic origin. To approach this question, we compared how three different misfolded proteins, guk1-7, gus1-3, and pro3-1, are handled by the cell. We show that all three are nontoxic, even though highly overexpressed, highlighting their usefulness in analyzing the cellular response to misfolding in the absence of severe stress. We found significant differences between the aggregation and disaggregation behavior of the misfolded proteins. Specifically, gus1-3 formed some aggregates that did not efficiently recruit the protein disaggregase Hsp104 and did not colocalize with the other misfolded reporter proteins. Strikingly, while all three misfolded proteins generally coaggregated and colocalized to specific sites in the cell, disaggregation was notably different; the rate of aggregate clearance of pro3-1 was faster than that of the other misfolded proteins, and its clearance rate was not hindered when pro3-1 colocalized with a slowly resolved misfolded protein. Finally, we observed using super-resolution light microscopy as well as immunogold labeling EM in which both showed an even distribution of the different misfolded proteins within an inclusion, suggesting that misfolding characteristics and remodeling, rather than spatial compartmentalization, allows for differential clearance of these misfolding reporters residing in the same inclusion. Taken together, our results highlight how properties of misfolded proteins can significantly affect processing.


Assuntos
Doenças Neurodegenerativas , Proteínas de Saccharomyces cerevisiae , Humanos , Agregados Proteicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Doenças Neurodegenerativas/metabolismo , Dobramento de Proteína , Proteínas de Choque Térmico/metabolismo , Guanilato Quinases/metabolismo
2.
FEMS Yeast Res ; 14(1): 40-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24103195

RESUMO

The evolutionary theory of aging regards aging as an evolved characteristic of the soma, and proponents of the theory state that selection does not allow the evolution of aging in unicellular species lacking a soma-germ demarcation. However, the life history of some microorganisms, reproducing vegetatively by either budding or binary fission, has been demonstrated to encompass an ordered, polar-dependent, segregation of damage leading to an aging cell lineage within the clonal population. In the yeast Saccharomyces cerevisiae and the bacterium Escherichia coli, such segregation is under genetic control and includes an asymmetrical inheritance of protein aggregates and inclusions. Herein, the ultimate and proximate causation for such an asymmetrical inheritance, with special emphasis on damaged/aggregated proteins in budding yeast, is reviewed.


Assuntos
Divisão Celular , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Regulação da Expressão Gênica , Transporte Proteico , Saccharomyces cerevisiae/genética
3.
Biotechnol J ; 16(12): e2100059, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34499423

RESUMO

Given the potential applications of gas vesicles (GVs) in multiple fields including antigen-displaying and imaging, heterologous reconstitution of synthetic GVs is an attractive and interesting study that has translational potential. Here, we attempted to express and assemble GV proteins (GVPs) into GVs using the model eukaryotic organism Saccharomyces cerevisiae. We first selected and expressed two core structural proteins, GvpA and GvpC from cyanobacteria Anabaena flos-aquae and Planktothrix rubescens, respectively. We then optimized the protein production conditions and validated GV assembly in the context of GV shapes. We found that when two copies of anaA were integrated into the genome, the chromosomal expression of AnaA resulted in GV production regardless of GvpC expression. Next, we co-expressed chaperone-RFP with the GFP-AnaA to aid the AnaA aggregation. The co-expression of individual chaperones (Hsp42, Sis1, Hsp104, and GvpN) with AnaA led to the formation of larger inclusions and enhanced the sequestration of AnaA into the perivacuolar site. To our knowledge, this represents the first study on reconstitution of GVs in S. cerevisiae. Our results could provide insights into optimizing conditions for heterologous protein production as well as the reconstitution of other synthetic microcompartments in yeast.


Assuntos
Cianobactérias , Proteínas de Saccharomyces cerevisiae , Proteínas de Bactérias/genética , Cianobactérias/genética , Proteínas de Choque Térmico/genética , Proteínas de Membrana , Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Front Mol Neurosci ; 11: 249, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083092

RESUMO

Protein quality control (PQC) is critical to maintain a functioning proteome. Misfolded or toxic proteins are either refolded or degraded by a system of temporal quality control and can also be sequestered into aggregates or inclusions by a system of spatial quality control. Breakdown of this concerted PQC network with age leads to an increased risk for the onset of disease, particularly neurological disease. Saccharomyces cerevisiae has been used extensively to elucidate PQC pathways and general evolutionary conservation of the PQC machinery has led to the development of several useful S. cerevisiae models of human neurological diseases. Key to both of these types of studies has been the development of several different model misfolding proteins, which are used to challenge and monitor the PQC machinery. In this review, we summarize and compare the model misfolding proteins that have been used to specifically study spatial PQC in S. cerevisiae, as well as the misfolding proteins that have been shown to be subject to spatial quality control in S. cerevisiae models of human neurological diseases.

5.
Essays Biochem ; 61(3): 317-324, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28539486

RESUMO

Ageing can be defined as a gradual decline in cellular and physical functions accompanied by an increased sensitivity to the environment and risk of death. The increased risk of mortality is causally connected to a gradual, intracellular accumulation of so-called ageing factors, of which damaged and aggregated proteins are believed to be one. Such aggregated proteins also contribute to several age-related neurodegenerative disorders e.g. Alzheimer's, Parkinson's, and Huntington's diseases, highlighting the importance of protein quality control (PQC) in ageing and its associated diseases. PQC consists of two interrelated systems: the temporal control system aimed at refolding, repairing, and/or removing aberrant proteins and their aggregates and the spatial control system aimed at harnessing the potential toxicity of aberrant proteins by sequestering them at specific cellular locations. The accumulation of toxic conformers of aberrant proteins during ageing is often declared to be a consequence of an incapacitated temporal PQC system-i.e. a gradual decline in the activity of chaperones and proteases. Here, we review the current knowledge on PQC in relation to ageing and highlight that the breakdown of both temporal and spatial PQC may contribute to ageing and thus comprise potential targets for therapeutic interventions of the ageing process.


Assuntos
Envelhecimento/fisiologia , Envelhecimento/genética , Animais , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA